
A Practical Wait-Free Simulation for Lock-Free Data Structures ∗

Shahar Timnat
Dept. of Computer Science, Technion

stimnat@cs.technion.ac.il

Erez Petrank
Dept. of Computer Science, Technion

erez@cs.technion.ac.il

Abstract
Lock-free data structures guarantee overall system progress,
whereas wait-free data structures guarantee the progress of
each and every thread, providing the desirable non-starvation
guarantee for concurrent data structures. While practical
lock-free implementations are known for various data struc-
tures, wait-free data structure designs are rare. Wait-free
implementations have been notoriously hard to design and
often inefficient. In this work we present a transformation of
lock-free algorithms to wait-free ones allowing even a non-
expert to transform a lock-free data-structure into a practical
wait-free one. The transformation requires that the lock-free
data structure is given in a normalized form defined in this
work. Using the new method, we have designed and im-
plemented wait-free linked-list, skiplist, and tree and we
measured their performance. It turns out that for all these
data structures the wait-free implementations are only a few
percent slower than their lock-free counterparts, while still
guaranteeing non-starvation.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

Keywords Wait-Freedom; Lock-Freedom

1. Introduction
Concurrent data structures are designed to utilize all avail-
able cores in order to achieve faster performance. One of
the important properties of concurrent data structures is the
progress guarantee they provide. Typically, the stronger the
progress guarantee is, the harder it is to design the algorithm,
and often, stronger progress guarantees come with a higher
performance cost.

∗ This work was supported by the Israeli Science Foundation grant No.
283/10.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP ’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright c© 2014 ACM 978-1-4503-2656-8/14/02. . . $15.00.
http://dx.doi.org/10.1145/2555243.2555261

Standard progress guarantees include obstruction-free-
dom, lock-freedom (a.k.a. non-blocking), and wait-freedom.
The strongest among these is wait-freedom. A wait-free al-
gorithm guarantees that every thread makes progress (typi-
cally, completing a method) in a finite number of steps, re-
gardless of other threads’ behavior. This worst-case guaran-
tee has its theoretical appeal and elegance, but is also impor-
tant in practice for making concurrent data structures use-
able with real-time systems. For real-time, it is not enough
that progress is made in almost all executions. Progress
(i.e., meeting the deadline) must be proven to happen in
all executions. However, very few wait-free algorithms are
known, as they are considered notoriously hard to design,
and largely inefficient. The weaker lock-freedom guaran-
tee is more common. A lock-free algorithm guarantees that
at least one thread makes progress in a finite number of
steps. The downside of the lock-free guarantee is that all
threads but one can starve in an execution, meaning that
lock-freedom cannot suffice for a real-time scenario. As
lock-free data structures are easier to design, constructions
for many lock-free data structures are available in the litera-
ture, including the stack [17], the linked-list [14], the skiplist
[17], and the binary search tree [7]. Furthermore, practical
implementations for many lock-free algorithms are readily
available in standard Java libraries and on the Web.

The existence of wait-free data structures has been shown
by Herlihy [15] using universal simulations. Universal simu-
lation techniques have evolved dramatically since then (e.g.,
[1, 4–6, 8, 12, 16]), but even the state-of-the-art universal
construction is too slow compared to the lock-free or lock-
based implementations and cannot be used in practice.

Recently, we have seen some progress with respect to
practical wait-free data structures. A practical design of a
wait-free queue relying on compare and swap (CAS) opera-
tions was presented in [18, 19]. Next, an independent con-
struction of a wait-free stack and queue appeared in [9].
And finally, a wait-free algorithm for the linked-list has been
shown in [24].1

1 In fact, [9] also presented an entirely new universal construction. However,
in the general case (i.e., except for the stack and the queue) this construction
required each thread to create a local copy of the entire data structure for
every operation, which makes it impractical.

To obtain a fast wait-free queue and linked-list, the fast-
path-slow-path methodology has been adopted for use with
wait-freedom in [19, 24]. The fast-path-slow-path methodol-
ogy is ubiquitous in systems in general and in parallel com-
puting particularly (e.g., [2, 3, 20, 22]). It is typically used to
partitions slow handling of difficult cases from fast handling
of the more typical cases.

The way the fast-path-slow-path methodology was used
in [19] was to let an operation start executing using a fast
lock-free algorithm, and only move to the slower wait-
free path upon failing to make progress in the lock-free
execution. It is often the case that an operation execution
completes in the fast lock-free path, achieving good perfor-
mance. But some operations fail to make progress in the fast
path due to contention, and in this case, the execution moves
to the slower wait-free path in which it is guaranteed to make
progress. As many operations execute on the fast (lock-free)
path, the performance of the combined execution is almost as
fast as that of the lock-free data structure. It is crucial to note
that even the unlucky threads, that do not manage to make
progress in the fast path, are guaranteed to make progress in
the slow path, and thus the strong wait-free guarantee can
be obtained. The fast-path-slow-path methodology has been
shown to make the wait-free queue [18] and linked-list of
[24] almost as efficient as their lock-free counterpart.

The process of designing a fast wait-free algorithm for
a new data structure is complex, difficult, and error-prone.
One approach to designing new wait-free algorithms, which
is also the one used in [18, 19, 24], is to start with a lock-
free algorithm for the data structure, work (possibly hard) to
construct a correct wait-free algorithm by adding a helping
mechanism to the original algorithm, and then work (pos-
sibly hard) again to design a correct and efficient fast-path-
slow-path combination of the lock-free and wait-free ver-
sions of the original algorithm. Designing a fast-path-slow-
path algorithm is nontrivial. One must design the lock- and
wait-free algorithms to work in sync to obtain the overall
combined algorithm with the required properties.

In this work we ask whether this entire design can be done
automatically, and so also by non-experts. Given a lock-free
data structure, can we apply a generic method to add an
adequate helping mechanism and obtain a wait-free version
for it, and then automatically combine the original lock-free
version with the obtained wait-free version to create a fast
wait-free algorithm for the same data structure?

We answer this question in the affirmative and present an
automatic transformation that takes a linearizable lock-free
data structure in a normalized representation (that we define)
and transforms it to a practical wait-free data structure, that
is almost as efficient as the original lock-free algorithm.

We next claim that the normalized representation we pro-
pose is meaningful in the sense that important known lock-
free algorithms for data structures can be easily specified in
this form. In fact, all linearizable lock-free data structures

that we are aware of can be specified in a normalized form.
We demonstrate the generality of the proposed normalized
form by specifying several important lock-free data struc-
tures in their normalized form. We then obtain wait-free ver-
sions of them using the proposed transformation. In partic-
ular, we transform two linked-lists [11, 14], a skiplist [17],
and a binary search tree [7] to create practical wait-free de-
signs for them all. To the best of our knowledge, practical
wait-free versions of the skiplist and the tree are not known
in the literature and are presented here for the first time.

Next, in order to verify that the resulting algorithms are
indeed efficient, we implemented all of the above wait-free
algorithms and measured the performance of each. It turns
out that the performance of all these implementations is only
a few percent slower than the original lock-free algorithm
from which they were derived. Given these results, it seems
like wait-freedom can be adopted for general use, and not
only for real-time systems. Similar to car airbags, they are
seldom deployed but good to have in case of need.
The contributions of this work are the following:
1. A transformation from any normalized lock-free data

structure to a wait-free data structure that (almost) pre-
serves the original algorithm efficiency. This allows a
simple creation of practical wait-free data structures.

2. A demonstration of the generality of the normalized rep-
resentation, by showing the normalized representation for
lock-free linked-list, skiplist and tree.

3. The first design of a practical wait-free skiplist.
4. The first design of a practical wait-free tree.
5. An implementation and reported measurements validat-

ing the efficiency of the proposed scheme.

The idea of transforming an algorithm to provide a practi-
cal algorithm with a different progress guarantee is not new.
Taubenfeld [23], Ellen et al. [10] and Guerraoui et al. [13]
are examples of such transformations. But none of them al-
lows obtaining wait-free data structures in the standard asyn-
chronous model.

The paper is organized as follows. In Section 2 we pro-
vide an overview of the proposed transfromation. In Section
3 we examine typical lock-free data structures, and charac-
terize their properties in preparation to defining a normalized
representation. The normalized representation is defined in
Section 4, and the details of simulating normalized lock-free
algorithms in a wait-free manner appear in Section 5. In Sec-
tion 6 we give an example of how to apply our technique
using Harris’s linked-list. We give highlights of the correct-
ness proof in Section 7, and our measurements are reported
in Section 8.

2. Tranformation overview
The move from the lock-free implementation to the wait-
free one is executed by simulating the lock-free algorithm
in a wait-free manner. The simulation starts by simply run-
ning the original lock-free operation (with minor modifica-

tions that will be soon discussed). A normalized lock-free
implementation has some mechanism for detecting failure to
make progress (due to contention). When an operation fails
to make progress it asks for help from the rest of the threads.
Asking for help is done by enqueuing a succinct description
of its current computation state on a wait-free queue (we use
the queue of [18]). One modification to the fast lock-free ex-
ecution is that each thread checks once in a while whether
a help request is enqueued on the help queue. Threads that
notice an enqueued request for help move to helping a single
operation on the top of the queue. Help includes reading the
computation state of the operation to be helped and then con-
tinuing the computation from that point, until the operation
completes and its result is reported.

The major challenges are in obtaining a succinct descrip-
tion of the computation state, in the proper synchroniza-
tion between the (potentially multiple) concurrent helping
threads, and in the synchronization between helping threads
and threads executing other operations on the fast lock-free
path. The normalized representation is enforced in order to
allow a succinct computation representation, to ensure that
the algorithm can detect that it is not making progress, and
to minimize the synchronization between the helping threads
to a level that enables fast simulation.

The helping threads synchronize during the execution of
an operation at critical points, which occur just before and
just after a modification of the data structure. Assume that
modifications of the shared data structure occur using a CAS
operation. A helping thread runs the operation it attempts to
help locally and independently until reaching a CAS instruc-
tion that modifies the shared structure. At that point, it coor-
dinates with all helping threads which CAS should be exe-
cuted. Before executing the CAS, the helping threads jointly
agree on what the CAS parameters should be (address, ex-
pected value, and new value). After deciding on the param-
eters, the helping threads attempt to execute the CAS and
then they synchronize to ensure they all learn whether the
CAS was successful. The simulation ensures that the CAS is
executed exactly once. Then each thread continues indepen-
dently until reaching the next CAS operation and so forth,
until the operation completes. Upon completing the opera-
tion, the operation’s result is written into the computation
state, the computation state is removed from the queue, and
the owner thread (the thread that initiated the operation in
the first place) can return.

There are naturally many missing details in the above
simplistic description, but for now we will mention two
major problems. First, synchronizing the helping threads
before each CAS, and even more so synchronizing them
again at the end of a CAS execution to enable all of them
to learn whether the CAS was successful, is not simple.
It requires adding version numbering to some of the fields
in the data structure, and also an extra modified bit. We
address this difficulty in Section 5.

The second problem is how to succinctly represent the
computation state of an operation. An intuitive observation
(which is formalized later) is that for a lock-free algorithm,
there is a relatively light-weight representation of its compu-
tation state. This is because by definition, if at any point dur-
ing the run a thread stops responding, the remaining threads
must be able to continue to run as usual. This implies that
if a thread modifies the data structure, leaving it in an “in-
termediate state” during the computation, then other threads
must be able to restore it to a “normal state”. Since this often
happens in an execution of a lock-free algorithm, the infor-
mation required to do so must be found on the shared data
structure, and not (solely) in the thread’s inner state. Using
this observation, and distilling a typical behavior of lock-free
algorithms, we introduce a normalized representation for a
lock-free algorithm, as defined in Section 4. The normalized
representation is built in a way that enables us to represent
the computation state in a compact manner, without intro-
ducing substantial restrictions on the algorithm itself.

There is one additional key observation required. In the
above description, we mentioned that the helping threads
must synchronize in critical points, immediately before and
immediately after each CAS that modifies the data structure.
However, it turns out that with many of the CASes, which
we denote auxiliary CASes, we do not need to use synchro-
nization at all. As explained in Section 3, the nature of lock-
free algorithms makes the use of auxiliary CASes common.
Most of Section 3.2 is dedicated to formally define paral-
lelizable methods; these are methods that only execute aux-
iliary CASes, and can therefore be run by helping threads
without any synchronization. These methods will play a key
role in defining normalized lock-free representation in Sec-
tion 4.

3. Typical Lock-Free Algorithms
In this section we provide the intuition on how known lock-
free algorithms behave, and set up some notation and defini-
tions that are then used in Section 4 to formally specify the
normalized form of lock-free algorithms.

3.1 Motivating Discussion
Let us examine the techniques frequently used within lock-
free algorithms. We target linearizable lock-free data struc-
tures that employ CASes as the synchronization mechanism.
A major difficulty that lock-free algorithms often need to
deal with is that a CAS instruction executes on a single word
(or double word) only, whereas the straightforward imple-
mentation approach requires simultaneous atomic modifica-
tion of multiple (non-consecutive) words2. Applying a mod-
ification to a single-field sometimes leaves the data structure
inconsistent, and thus susceptible to races. A commonly em-
ployed solution is to use one CAS that (implicitly) blocks
any further changes to certain fields, and let any thread re-

2 This is one of the reasons why transactional memories are so attractive.

move the blocking after restoring the data structure to a de-
sirable consistent form and completing the operation at hand.

An elegant example is the delete operation in Harris’s
linked-list [14]. In order to delete a node, a thread first sets a
special mark bit at the node’s next pointer, effectively block-
ing this pointer from ever changing again. Any thread that
identifies this “block” may complete the deletion by physi-
cally removing the node (i.e., execute a CAS that makes its
predecessor point to its successor). The first CAS, which is
executed only by the thread that initiates the operation, can
be intuitively thought as an owner CAS.

In lock-free algorithms’ implementations, the execution
of the owner CAS is often separated from the rest of the
operation (restoring the data structure to a “normal” form,
and “releasing” any blocking set by the owner CAS) into
different methods. Furthermore, the methods that do not ex-
ecute the owner CAS but only restore the data structure can
usually be safely run by many threads concurrently. This al-
lows other threads to unblock the data structure and continue
executing themselves. We call such methods parallelizable
methods.

3.2 Notations and Definitions
In this section we formally define the essential concepts used
in this work.

DEFINITION 3.1. (Futile CAS.) A futile CAS is a CAS in
which the expected value and the new value are identical.

DEFINITION 3.2. (Equivalent Executions.) Two executions
E and E′ of operations on a data structure D are considered
equivalent if the following holds.

• (Results:) In both executions all threads execute the same
data structure operations and receive identical results.

• (Relative Operation Order:) The order of invocation
points and return points of all data structure operations
is the same in both executions.

Note that the second requirement does not imply the same
timing for the two executions. It only implies the same rel-
ative order of operation invocations and exits. For example,
if the ith operation of thread T1 was invoked before the jth
operation of T2 returned in E, then the same must also hold
in E′. Clearly, if E and E′ are equivalent executions, then E
is linearizable if and only if E′ is linearizable.

In what follows we identify methods that can be easily
run with help, i.e., can be executed in parallel by several
threads without harming correctness and while yielding ade-
quate output. To formalize parallelizable methods we first
define a harmless, or avoidable parallel run of a method.
Loosely speaking, a run of a method is avoidable, if each
CAS executed in it is avoidable. By avoidable, we mean that
either: 1) the CAS fails, or 2) the CAS is futile, or 3) there
exists an equivalent execution in which the CAS fails. Nor-
mally, in the equivalent execution, the CAS fails because a
different thread executes the same CAS (i.e., same address,

same expected-value, and same new-value), but this is not
obligatory by the definition.

DEFINITION 3.3. (Avoidable method execution) A run of
a method M by a thread T on input I in an execution E is
avoidable if each CAS that T attempts during the execution
of M is avoidable in the following sense. Let S1 denote the
state of the computation right before the CAS is attempted
by T . Then there exists an equivalent execution E′ for E
such that both executions are identical until reaching S1,
and in E′ the CAS that T executes in its next step (after S1)
is either futile or unsuccessful. Also, in E′ the first execution
step from S1 is executed by a thread who is the owner of an
ongoing operation3.

We now move to defining parallelizable methods that
can be executed on the data structure without “harming” its
consistency. To this end, we conduct a mental experiment in
which we consider additional parallel threads that execute
methods concurrently with the run of the algorithm. This
mental experiment creates executions that are not “legal”.
We will not have real executions in which a thread will just
run a single method of an operation out of the blue with
parameters supplied by some oracle. However, the resulting
execution is well defined and we will use such “illegal”
executions as hybrids for an argument that one real execution
(the wait-free run) is equivalent to another real execution (an
equivalent lock-free run).

DEFINITION 3.4. (Parallelizable method.) A method M is
a parallelizable method of a given lock-free algorithm, if for
any execution in which M is called by a thread T with an
input I the following two conditions hold. First, the execu-
tion of a parallelizable method depends only on its input,
the shared data structure, and the results of the method’s
CAS operations. In particular, the execution does not depend
on the executing thread’s local state prior to the invocation
of the parallelizable method. Second, at the point where M
is invoked, if we create and run a finite number of parallel
threads, each one executing M on the same input I concur-
rently with the execution of T , then in any possible resulting
execution, all executions of M by the additional threads are
avoidable.

Loosely speaking, for every invocation of a parallelizable
method M by one of the newly created threads, there is an
equivalent execution in which this method’s invocation does
not change the data structure at all. This is because every
CAS it attempts might be executed by one of the other (origi-
nal) threads, thus making it fail (unless it is futile). For exam-
ple, Harris’s linked-list search method is parallelizable. The
only CASes that the search method executes are those that
physically remove nodes that are already logically deleted.
Assume T runs the search method, and consider one such

3 This implies that this owner thread is in the middle of executing some
operation when arriving at S1.

logically deleted node. Consider a CAS in which T attempts
to physically remove this node from the list. We denote the
state right before this attempt S1. Now consider the thread
T1, which marked this node as logically deleted in the first
place. This thread must currently be attempting to physically
remove the node so that it can exit the delete operation. An
alternative execution in which T1 is given the time (at S1) to
physically remove the node, and only then does T attempt
the considered CAS and fails, is equivalent.

Parallelizable methods play an important role in our con-
struction, since helping threads can run them unchecked. If
a thread cannot complete a parallelizable method, helping
threads may simply execute the same method as well. By
the definition, parallelizable methods may be run out of the
blue by threads that do not execute actual operations on the
data structure.

In the proof, we will claim the equivalence of the wait-
free execution and the lock-free one via several equivalent
executions, some of them being “illegal” executions that
run parallelizable methods “out of the blue” by additional
threads that only execute these methods and cease to exist.
Such “illegal” executions will only be used to incrementally
argue that two legal executions of the real protocols are
equivalent.

We now focus on a different issue. In order to run the fast-
path-slow-path methodology, there must be some means to
identify the case that the fast path is not making progress on
time, and then move to the slow path. To this end, we define
the Contention failure counter. Intuitively, a contention fail-
ure counter is a counter associated with an invocation of a
method (i.e. many invocations of the method imply separate
counters), measuring how often the method is delayed due
to contention.

DEFINITION 3.5. (Contention failure counter.) A con-
tention failure counter for a method M is an integer field C
associated with an invocation of M (i.e. many invocations
of M imply many separate contention failure counters). De-
note by C(t) the value of the counter at time t. The counter
is initialized to zero upon method invocation, and is updated
by the method during its run such that the following holds.

• (Monotonically increasing:) Each update to the con-
tention failure counter increments its value by one.

• (Bounded by contention:) Assume M is invoked by
Thread T and let d(t) denote the number of data struc-
ture modifications by threads other than T between the
invocation time and time t. Then it always hold that
C(t) ≤ d(t). 4

• (Incremented periodically:) The method M does not run
infinitely many steps without incrementing the contention
failure counter.

4 In particular, this implies that if no modifications were made to the data
structure outside the method M since its invocation until time t, then
C(t) = 0.

A lock-free method must complete within a finite number
of steps if no modifications are made to the data structure
outside this method. Otherwise, allowing this method to run
solo results in an infinite execution, contradicting its lock-
freedom. Thus, the requirements that the counter remains
zero if no concurrent modifications occur, and the require-
ment that it does not remain zero indefinitely, do not contra-
dict each other. The contention failure counter will be used
to determine that a method in the fast-path is not making
progress and so its executer should switch to the slow path.

For most methods, counting the number of failed CASes
can serve as a good contention failure counter. However,
more complex cases exist.

4. Normalized Lock-Free Algorithms
In this section, we specify what a normalized lock-free algo-
rithm is. We later show how to simulate a normalized lock-
free algorithm in a wait-free manner automatically.

4.1 The Normalized Representation
A normalized lock-free algorithm is one for which each op-
eration can be presented in three stages, such that the middle
stage executes the owner CASes, the first is a preparatory
stage and the last is a post-execution step.

Using Harris’s linked-list example, the delete operation
runs a first stage that finds the location to mark a node as
deleted, while sniping out of the list all nodes that were
previously marked as deleted. By the end of the search (the
first stage) we can determine the main CAS operation: the
one that marks the node as deleted. Now comes the middle
stage where this CAS is executed, which logically deletes
the node from the list. Finally, in a post-processing stage, we
attempt to snip out the marked node from the list and make
it unreachable from the list head.

In a normalized lock-free algorithm, we require that: any
access to the data structure is executed using a read or a
CAS; the first and last stages be parallelizable, i.e., can be
executed with parallelizable methods; and each of the CAS
operations of the second stage be protected by versioning.
This means that there is a counter associated with the field
that is incremented with each modification of the field. This
avoids potential ABA problems, and is further discussed in
Section 5.

DEFINITION 4.1. A lock-free algorithm is provided in a nor-
malized representation if:

• Any modification of the shared data structure is executed
using a CAS operation.

• Every operation of the algorithm consists of executing
three methods one after the other and which have the fol-
lowing formats.
1) CAS Generator, whose input is the operation’s input,
and its output is a list of CAS descriptors5

5 A CAS descriptor is a triplet: (address, expectedvalue, newvalue)

2) CAS Executor, which is a fixed method common to
all data structures and all algorithms. Its input is the list
of CAS descriptors output by the CAS generator method.
The CAS executor method attempts to execute the CASes
in its input one by one until the first one fails, or until
all CASes complete. Its output contains the list of CAS
Descriptors from its input and the index of the CAS that
failed (which is zero if none failed).
3) Wrap-Up, whose input is the output of the CAS Exe-
cution method plus the operation’s input. Its output is ei-
ther the operation result, which is returned to the owner
thread, or an indication that the operation should be
restarted from scratch (from the Generator method).

• The Generator and the Wrap-up methods are paral-
lelizable and they have an associated contention failure
counter.

• Finally, we require that the CASes that the Generator
method outputs be for fields that employ versioning (i.e.,
a counter is associated with the field to avoid an ABA
problem).

All lock-free algorithms for data structures that we are
aware of today can be easily converted into this form. As
an example, a normalized representation of Harris’s linked-
list is given in Section 6. We have also devised normalized
representations for the binary-search-tree of Ellen et al. [7],
the skiplist of Herlihy and Shavit [17], and the linked-list
of Fomitchev and Ruppert [11]. This is probably the best
indication that this normalized representation covers natural
lock-free algorithms. We remark that all abstract data types
can be implemented in a normalized lock-free algorithm,
using a simplified version of the universal construction of
Herlihy [15], but this construction is likely to be inefficient.

Intuitively, one can think of this normalized representa-
tion as separating owner CASes (those are the CASes that
must be executed by the owner thread in the lock-free algo-
rithm) from the other (denoted auxiliary) CASes. The aux-
iliary CASes can be executed by many helping threads and
therefore create parallelizable methods. Intuitively, the first
(generator) method can be thought of as running the algo-
rithm without performing the owner CASes. It just makes a
list of those to be performed by the executor method, and it
may execute some auxiliary CASes to help previous opera-
tions complete.

As an example, consider the DELETE operation of Har-
ris’s linked-list. When transforming it to the normalized
form, the generator method should call the search method
of the linked-list. The search method might snip out marked
(logically deleted) nodes; those are auxiliary CASes, helping
previous deletions to complete. Finally, the search method
returns the node to be deleted (if a node with the needed
key exists in the list). The CAS that marks this node as log-
ically deleted is the owner CAS, and it must be executed
exactly once. Thus, the generator method does not execute
this owner CAS but outputs it to be executed by the CAS

Executer method. If no node with the needed key is found in
the list, then there are no owner CASes to be executed, and
the generator method simply returns an empty list of CASes.

Next, the executor attempts to execute all these owner
CASes. In Harris’s linked list, like in most known algo-
rithms, there is only one owner CAS. The CAS EXECU-
TOR method attempts the owner CAS (or the multiple owner
CASes one by one), until completing them all, or until one
of them fails. After the CAS EXECUTOR method is done,
the operation might already be over, or it might need to start
from scratch (typically if a CAS failed), or some other aux-
iliary CASes should be executed before exiting. The deci-
sion on whether to complete or start again (and possibly fur-
ther execution of auxiliary CASes) is done in the WRAP-UP
method. In Harris’ linked-list example, if the GENERATOR
method outputted no CASes, then it means that no node with
the required key exists in the list, and the wrap-up method
should return with failure. If a single CAS was outputted by
the GENERATOR but its execution failed in the EXECUTER,
then the operation should be restarted from scratch. Finally,
if a single CAS was outputted by the GENERATOR and it was
successfully executed by the EXECUTER, then the wrap-up
method still needs to physically remove the node from the
list (an auxiliary CAS), and then return with success. Re-
moving the node from the list can be done similarly to the
original algorithm, by calling the SEARCH method again.

5. Transformation Details
In this section, we provide the efficient wait-free simulation
of any normalized lock-free algorithm. We start with an
overview.

To execute an operation, a thread starts by executing
the normalized lock-free algorithm with a contention fail-
ure counter checked occasionally to see if contention has
exceeded a predetermined limit. If the operation completes,
then we are done. Otherwise, the contention failure counter
exceeded its threshold and the slow path must be taken. The
slow path begins by the thread creating an operation record
object that describes the operation it is executing. A pointer
to this operation record is then enqueued in a wait-free queue
called the help queue. Next, the thread helps operations on
the help queue one by one according to their order in the
queue, until its own operation is completed. Threads in the
fast path that notice a non-empty help queue provide help as
well, before starting their own fast-path execution.

To provide help, a thread examines the first operation
record enqueued on the help queue. The operation record
describes which operation should now be executed, and also
which of its three methods needs to be run. Running the
CAS GENERATOR method or the WRAP-UP method is eas-
ier, as they are parallelizable methods and they can be run
by several threads concurrently at no risk. To execute one of
these two, the helping thread executes their code using the
input in the operation record. Upon completion, the helping

thread creates a new updated operation record that includes
the output of the method. It then tries (using an atomic CAS)
to let the new operation record replace the original one, and
become visible to all threads. If this CAS fails, then another
thread has already completed the execution of this method
and reported a (perhaps different) output, which has been
publicly set as this method’s output. The helping thread pro-
ceeds to help using the new publicly visible operation record,
whether this operation record has been created by itself or by
a different helping thread. It remains to describe helping the
CAS EXECUTOR method.

The CAS EXECUTOR method is not parallelizable and
therefore helping threads cannot simply run it concurrently.
To support a concurrent execution of it, fields that can poten-
tially be modified by the CAS EXECUTOR are paired with
a versioning field and a modified bit. These additional
fields allow executing each CAS exactly once, and publicly
report success or failure. The success or failure of each CAS
is reported in a special field on the CAS list. This controlled
execution of the critical CASes requires care to ensure that:
each CAS is executed exactly once, the success of the CAS
gets published even if one of the threads stops responding,
and an ABA problem is not created by letting several threads
execute this sensitive CAS instead of the single thread that
was supposed to execute it in the original lock-free algo-
rithm. To achieve this careful execution, we first assume that
each CAS is versioned, so that a belated CAS that occurs
long after the original CAS completed, cannot foil the exe-
cution and it must fail. Furthermore, a common problem that
appears when designing wait-free algorithms with helping
threads naturally arises here. We need to execute the CAS
in one memory location and report that the execution suc-
ceeded (or not) in a different memory location (in the CAS
list pointed to by the operation record). To achieve this, we
use, in addition to the version number (or in fact as part
of the version number), an extra modified bit to signal
whether the CAS has already been executed (successfully)
or not. The details follow.

5.1 The Help Queue and the Operation Record
The description of operations that require help is kept in
a wait-free queue, similar to the one proposed by Kogan
and Petrank in [18]. The queue in [18] supports the stan-
dard ENQUEUE and DEQUEUE operations. We slightly mod-
ify it to support three operations: ENQUEUE, PEEK, and
CONDITIONALLY-REMOVE-HEAD. The ENQUEUE opera-
tion just enqueues a value to the tail of the queue as usual.
The new PEEK operation returns the current head of the
queue, without removing it. Finally, the CONDITIONALLY-
REMOVE-HEAD operation receives a value it expects to find
at the head of the queue, and removes it (dequeues it) only
if this value is found at the head. In this case it returns true.
Otherwise, it does nothing and returns false. This queue is
in fact simpler to design than the original queue, because
DEQUEUE is not needed, because PEEK requires a single

OperationRecordBox:

 val // points to a record

OperationRecord:

 ownerTid // the owner thread of this operation

 operation // Optype, i.e. insert, delete, contains…

 input // input parameters for the operation

 state // one of: restart / pending / completed

 result // operation result (when completed)

 CAS-list // a list of CAS descriptors

CAS Descriptor:

 target // target address

 expected-value

 new-value

 state // pending/failure/success

Figure 1. Operation Record

read, and the CONDITIONALLY-REMOVE-HEAD can be ex-
ecuted using a single CAS. (Therefore, CONDITIONALLY-
REMOVE-HEAD can be easily written in a wait-free manner.)
Some care is needed because of the interaction between EN-
QUEUE and CONDITIONALLY-REMOVE-HEAD, but a simi-
lar mechanism already appears in [18], and we simply used
it in our case as well.

We use this queue as the help queue. If a thread fails
to complete an operation due to contention, it asks for help
by enqueuing a request on the help queue. This request
is in fact a pointer to a small object (the operation record
box) that is unique to the operation and identifies it. It is
only reclaimed when the operation is complete. In this oper-
ation record box object there is a pointer to the operation

record itself, and this pointer is modified by a CAS when
the operation’s status needs to be updated. We specify the
content of this object and record in Figure 1.

5.2 Asking for Help and Giving Help
When a thread T starts executing a new operation, it first
PEEKs at the head of the help queue. If it sees a non-null
value, then T helps the enqueued operation before executing
its own operation. After helping to complete one operation,
T proceeds to execute its own operation (even if there are
more help requests pending on the queue).

A thread starts executing its own operation by running
the (normalized) lock-free version of the operation. As lock-
freedom does not guarantee non-starvation, the thread may
run for a long time without making progress. To obtain non-
starvation, we make the thread check periodically that its
contention failure counter does not exceed a predetermined
limit. This check should be performed periodically, e.g., on
each function call and each backward jump. If the operation
completes while executing the lock-free (fast) path, then
we are done. This must be the case when no contention
occurs, because the given lock-free algorithm must make
progress when no contention is encountered. Otherwise, the
contention failure counter will notify that the operation is
delayed due to contention. In this case, the thread creates

1: void help (boolean beingHelped, OperationRecordBox myHelpBox)
{

2: while (true) {
3: OperationRecordBox head = helpQueue.peekHead();
4: if (head != null)
5: helpOp(head);
6: if (!beingHelped || myHelpBox.val.state == OpState.completed)
7: return;
8: }
9: }

Figure 2. The help method

an operation record, encapsulates it with an operation record
box and requests help by enqueuing the operation record box
on the wait-free help queue. Next, the enqueuing thread
starts helping the operations on the help queue one by one,
until its own operation is completed (in practice, its own
operation is likely to be the only one in the queue).

To participate in helping an operation, a thread calls the
HELP method, telling it whether it is on the fast path, and
so willing to help a single operation, or on the slow path,
in which case it also provides a pointer to its own operation
record box. In the latter case, the thread is willing to help all
operations up to its own operation. The HELP method will
PEEK at the head of the help queue, and if it sees a non-null
operation record box, it will invoke the HELPOP method. A
null value means the help queue is empty, and so no further
help is needed.

The HELPOP, invoked by the HELP method, helps a spe-
cific operation O, until it is completed. Its input is O’s
operation record box. This box may either be the current
head in the help queue or it is an operation that has been
completed and is no longer in the help queue. As long
as the operation is not complete, HELPOP calls one of the
three methods, PRECASES, EXECUTECASES, or POST-
CASES, as determined by the operation record. If the op-
eration is completed, HELPOP attempts to remove it from
the queue using CONDITIONALLY-REMOVE-HEAD. When
the HELPOP method returns, it is guaranteed that the opera-
tion record box in its input represents a completed operation
and is no longer in the help queue.

The PRECASES method invokes the CAS GENERATOR
method of the normalized lock-free algorithm, which gener-
ates the list of CAS descriptions for the CAS EXECUTOR. It
runs a monitored version of the generator, which occasion-
ally checks the contention counter in order to guarantee this
method will not run forever. If the CAS GENERATOR com-
pletes its execution without being halted prematurely due to
the contention failure counter, The PRECASES method al-
locates a new operation record that holds the result returned
by the CAS GENERATOR. Then, the PRECASES method at-
tempts to make its operation record the official global oper-
ation record for this operation by attempting to atomically
change the operation record box to reference it. There is no
need to check whether this attempt succeeded, any operation

1: void helpOp(OperationRecordBox box) {
2: OperationRecord record = null;
3: do {
4: record = box.val;
5: if (record.state == OpState.restart) {
6: preCASes(box, record); . CAS generator plus extras.
7: }
8: if (record.state == OpState.pending) {
9: executeCASes(record); . carefully executes the CAS list.

10: postCASes(box, record); . wrap-up method, plus extras.
11: }
12: } while (record.state == OpState.restart || record.state == Op-

State.pending);
13: helpQueue.conditionallyRemoveHead(box);
14: }

Figure 3. The helpOp method

1: void preCASes(OperationRecordBox box, OperationRecord record) {
2: ArrayList<ICasDesc> cas-list = MonitoredRun(Of Genera-

torMethod on record);
3: if (cas-list != null) { .
4: newRecord = new OperationRecord(record.ownerTid,

record.operation, record.input, OpState.pending, null, cas-list);
5: box.val.compareAndSet(record, newRecord);
6: }
7: }

Figure 4. The preCASes method

record installed by any of the concurrently executing threads
is a proper record that can be used to continue the operation.

If during the execution of the CAS GENERATOR method
the contention counter reaches the predetermined thresh-
old, the thread simply quits this method with null and
reads the operation record box to see if another thread
has made progress with this operation (if not, the HELPOP
method will call the PRECASES method again.) If the
OperationRecord is not replaced by a new one, then soon
enough all threads will only run this CAS GENERATOR
method, all helping the same operation.

Using the fact that the original algorithm is lock-free, it
is possible to show that eventually some thread will suc-
cessfully complete the operation without being interrupted
by the contention failure counter. Intuitively, parallelizable
methods can only execute a finite number of CASes while no
owner CASes are exeucted6. For example, in the normalized
form of Harris’s linked list, given in Section 6, paralleliz-
able methods can only execute physical deletions of logi-
cally deleted nodes. Thus, the number of CASes executed in
the parallelizable methods is bounded by the number of logi-
cal deletions, and logical deletions are never executed inside
parallelizable methods. Once the helping threads complete
all the remaining physical deletions, they will execute no
more CASes, and will not stop each other from completing.

6 Formally, this is not accurate and some pathological exceptions exist.
However, even in those cases some thread must successfully complete the
operation eventually.

Next, we carefully execute the CASes obtained by the
PRECASES method. This is done in the EXECUTECASES
method (Figure 5). It receives as its input the operation
record, which holds the list of CAS descriptions to be exe-
cuted. Each CAS description is also associated with a state
field, which describes the execution state of this CAS: suc-
ceeded, failed, or still pending. Ideally, we would have liked
to execute three instructions atomically: (1) read the state,
(2) attempt the CAS (if the state is pending), and (3) update
the CAS state. Unfortunately, since these three instructions
work on two different locations (the CASed memory address
and the CAS state) we cannot run this atomically without
using a heavy mutual exclusion machinery that foils wait-
freedom (and is also costly).

We solve this atomicity problem and an additional ABA
problem by adding the versioning mechanism to the fields
that are being CASed. The ABA problem is introduced be-
cause a thread may be inactive for a while and then attempt
to execute a CAS that was already executed. Returning to the
atomicity issue, we must report the outcome of a CAS exe-
cution correctly, even if the thread that performed the suc-
cessful CAS is delayed before reporting the success and all
other threads fail to execute the CAS (as the field has al-
ready been modified). The ABA and the atomicity problems
nicely represent two major standard problems that arise with
the incorporation of a help mechanism to make a lock-free
algorithm wait-free.

To solve the first ABA problem we employ versioning
with all fields that require CASes. To solve the second prob-
lem we use an additional bit with each CASed field. (Practi-
cally, this would be one of the version bits.) This bit, denoted
the modified bit, will signify that a successful CAS has
been executed but (possibly) not yet reported. So when a
CAS is executed, a successful execution will put the new
value together with the modified bit set. All further at-
tempts to modify this field must fail as the old value of any
CAS never has this bit set. Thus, the operation that follows
a successful CAS operation must be a CAS that clears this
bit. However, before any thread attempts to clear this bit, the
thread must first update the state of the CAS to reflect this
success.

To summarize, the EXECUTECASES method goes over
the CASes in the list one by one, and helps execute them as
follows. First, it reads the CAS state. If it is successful and
the modified bit is set, and if the version has not yet been
incremented, then it uses a CAS to clear the modified bit and
increment the version and moves on to help the next CAS.
Otherwise, if the CAS state is currently set to failure, then
the EXECUTECASES method immediately returns. Other-
wise, the state is pending, and EXECUTECASES attempts
to execute the listed CAS and set the modified bit atom-
ically with it. Next, it checks whether the modified bit

is set, and if it is, it sets the (separate) CAS state to suc-
cess and only then attempts to clear the modified bit. Now if

1: private void executeCASes(OperationRecord record) {
2: for (int i = 0; i < record.numOfCases(); i++) {
3: ICasDesc cas = record.list.get(i);
4: if (cas.GetState() == CasState.success) {
5: cas.ClearBit(); . clears modified bit (if set). (See Remark 1)
6: continue;
7: }
8: if (cas.GetState() == CasState.failure)
9: return;

10: cas.ExecuteCas();
11: if (cas.ModifiedBitSet()) { . Checking not only that the

modified bit is checked, but also that the version has not changed.
12: cas.SetState(CasState.success); . Cas Succeeded. State is

modified atomically with a CAS.
13: cas.ClearBit(); . (See Remark 1)
14: }
15: if (cas.GetState() != CasState.success) {
16: cas.SetState(CasState.failure); . Either

this state change will fail because it has been previously updated, or
the CAS really failed.

17: return;
18: }
19: }
20: }
21: Remarks:
22: 1. Clearing the modified bit is done with a CAS. The expected value

for this CAS instruction is the new value of the original CAS.

Figure 5. The executeCASes Method

the CAS state is not set to success, then EXECUTECASES
sets this state to failure and returns. Otherwise, success is
achieved and EXECUTECASES proceeds to the next CAS.

An invariant of this mechanism is that in the entire data
structure, only a single modified bit might be set at any
given moment. This is exactly the bit of the CAS that is cur-
rently being helped by all helping threads. Before clearing
this modified bit, no other CAS execution can be helped.

The existence of the modified bit requires a minor
modification to the fast-path. When a thread attempts a CAS
and the CAS fails in the fast-path, it should check to see
whether the CAS failed because the modified bit in the
required field is set. If so, the thread should pause its current
execution and call the help method to participate in helping
the current operation to complete (clearing this bit in the
process). Failing to do so will foil the lock-freedom property
(and the wait-freedom property as well), because the thread
may forever fail in attempts to modify that field, even when
running solo.

After the CASes are executed, the HELPOP method calls
the POSTCASES method (Figure 6), which invokes the
WRAP-UP method of the original lock-free algorithm. If
the WRAP-UP method fails to complete due to contention,
the monitored run will return null and we will read again
the operation record box. If the WRAP-UP method was
completed without interruption, the POSTCASES method at-
tempts to make its private operation record visible to all by
atomically attempting to link it to the operation record

box. Note that its private operation record may indicate
a need to start the operation from scratch, or may indicate

1: void postCASes(OperationRecordBox box, OperationRecord record)
{

2: shouldRestart, operationResult = MonitoredRun(of Wrapup
Method on record);

3: if (operationResult == Null) Return
4: if (shouldRestart)
5: newRecord = new OperationRecord(record.ownerTid,

record.operation, record.input, OpState.restart, null, null);
6: else
7: newRecord = new OperationRecord(record.ownerTid,

record.operation, record.input, OpState.completed, operationResult,
null);

8: box.val.compareAndSet(record, newRecord);
9: }

Figure 6. The postCASes Method

that the operation is completed. When the control is returned
to the HELPOP method, the record is read and the execution
continues according to it.

6. Example: Harris’s Linked-List
Harris designed a practical lock-free linked-list [14]. A Java
implementation of it is available in [17]. Harris’s list is a
sorted list of nodes in which each node holds an integer
key, and only one node with a given key may be in the list
at any given moment. He employed a special mark bit in
the next pointer of every node, used to mark the node as
logically deleted. Thus, a node is deleted by first marking its
next pointer using a CAS (in effect, locking this pointer from
ever changing again) and then physically removing it from
the list by a CAS of its predecessor’s next field. Inserting a
new node can be done using a single CAS, making the new
node’s designated predecessor point to the new node.

We start by noting that Harris’s SEARCH method, which
is used by both the INSERT and DELETE operations, is a par-
allelizable method as is (there is no need to change it to make
it parallelizable). The SEARCH method’s input is an integer
key, and its output is a pair of adjacent nodes in the list, the
first with a key smaller than the input value, and the sec-
ond with a key greater than or equal to the input value. The
SEARCH method might make changes to the list: it might
physically remove marked nodes, those nodes that are log-
ically deleted. The SEARCH method is restarted in practice
anytime an attempted CAS fails. (Such an attempted CAS is
always an auxiliary CAS, attempting to physically remove a
logically deleted node.) A simple enough contention failure
counter for this method can be implemented by counting the
times this CAS failure happens.

We now specify a normalized form of Harris’s linked-list.
• A contention failure counter for all of the methods in

Harris’s linked-list can be implemented by counting the
number of failed CASes.

• The parallelizable Generator method is implemented as
follows: For an insert(key) operation:

Call the original search(key) method.

If a node is found with the wanted key, return an
empty list of CAS-descriptors. (The insert fails.)
If a pair (pred, succ) is returned by the search method,
create a new node n with the key, set n.next = succ,
and return a list with a single CAS descriptor, describ-
ing a change of pred.next to point to n.

The generator method for a delete(key) operation is:
Call the original search(key) method.
If no node is found with the given key, return an empty
list of CAS-descriptors.
If a node n was found appropriate for deletion, return a
list with a single CAS descriptor, describing a change
of n.next to set its mark bit.

The generator method for a contains(key) operation is:
return an empty list of CAS-descriptors.

• The parallelizable Wrap-up method is implemented as
follows: For an insert(key) or a delete(key) operation:

If the list of CAS-descriptors is empty, exit with result
false (operation failed).
If the CAS-descriptor was executed successfully, exit
with result true (operation succeeded). For a delete
operation, call the original search(key) prior to return-
ing true, to ensure the node is physically removed.
If the CAS-descriptor was not successful, indicate that
a restart of the operation is required.

For a contains(key) operation:
Call the original contains(key) method [17] (which
is already a parallelizable method) and exit with the
same result.

Note that there is a difference between calling the search
method from inside the help mechanism via the GENERA-
TOR method, and calling it from outside the help mechanism
while executing the fast lock-free path. When calling from
outside the GENERATOR method, if a thread tries to remove
a logically deleted node and fails due to a checked modified
bit, the thread switches to the help mechanism7. While
when called from inside the Generator method, it is already
inside the help mechanism, and thus recalling it should be
avoided. For this reason, in the actual Java code, the search
method receives a second parameter, a boolean that signifies
whether the calling thread is already inside the slow path or
not.

7. Correctness Highlights
We now discuss some key issues in the correctness proof for
the simulation described in this paper. Assume that the given
algorithm, denoted LF, is a linearizable lock-free algorithm
presented in a normalized form for a certain abstract data
type, ADT. Let WF be the output algorithm as described in

7 As explained in Section 5.2, failing to do so will foil the lock-freedom
property.

Section 5 with LF being the simulated lock-free algorithm.
Then we claim that WF is a linearizable wait-free algorithm
for the same abstract data type, ADT.

We show that for every execution of WF, there is an
equivalent execution (Definition 3.2) of LF. Since we know
that LF is correct and linearizable, it follows that WF is cor-
rect and linearizable as well. Consider any given execution
of WF. We build an equivalent execution of LF in three steps.
Step 1: (Segregate generator and wrap-up.) Given an ex-
ecution E0 of WF we build an equivalent execution E1 in
which any operation executed in the slow path in E0 by
several helping threads is replaced by an operation that is
executed by one single thread in the slow path. This single
thread in E1 executes the GENERATOR and WRAP-UP meth-
ods as they were performed by threads that successfully re-
ported their respective results into the operation record

box of this operation in E0. Other threads may execute the
GENERATOR or WRAP-UP parallelizable methods concur-
rently in E1, but the output they produce is discarded and
not used.
Step 2: (Move redundant help operations to auxiliary
threads.) Given an execution E1 output by Step 1, we build
an equivalent execution E2 in which all the extra execu-
tions of the GENERATOR or WRAP-UP parallelizable meth-
ods, whose output is discarded, are executed by new addi-
tional unrelated threads, each performing only one such ex-
tra method execution.
Step 3: (Drop auxiliary threads.) Given an execution E2

output by Step 2, we construct an equivalent execution E3 in
which the additional unrelated threads are simply dropped.
Using the fact that these additional threads execute avoid-
able methods, it can be shown that the resulting execution is
equivalent. The execution E3 is a legal linearizable execu-
tion of LF, which is equivalent to E and we are done.

Wait Freedom An easier yet critical part of the proof is
showing that each operation in WF is completed after a finite
number of steps. This is done in two steps. First, we show
that if there is an operation in WF that takes an unbounded
number of steps to complete, then from some point in the
execution, no operation at all can be completed (since all
the threads will be helping this single operation). Second,
we use again the transition from an execution of WF (E0)
to an execution of LF (E3). If for infinitely many steps no
operation is linearized in E0, then no operation is linearized
in E3 as well, in contradiction to the lock-free property of
the original algorithm. Thus, WF is shown wait free by way
of contradiction.

8. Performance
We chose four well-known lock-free algorithms of three
widely-used data structures, and used the transformation de-
scribed in this paper to derive a wait-free algorithm for each.
In our implementation we applied a (generally applicable)
optimization: we used the original (non-normalized) lock-

free algorithm for the fast path with an additional contention
failure counter for each of the methods of the original al-
gorithm. This optimization is possible whenever the normal-
ized algorithm and the original algorithm can safely run con-
currently on the same data structure.

The performance of each wait-free algorithm was com-
pared against the original lock-free algorithm. We stress that
we compared against the original lock-free version of the
algorithm without adding versioning to the CAS operations
and without modifying it to fit a normalized representation.

The four lock-free algorithms we chose were Harris’s
linked-list [14], the binary-search-tree of Ellen et al. [7],
the skiplist of Herlihy and Shavit [17], and the linked-list
of Fomitchev and Ruppert [11]. All implementations were
coded in Java. The Java implementations for Harris’s linked-
list and the skiplist were taken from [17]. We implemented
the binary search tree and the list of Fomitchev and Ruppert
in the most straightforward manner, following the papers.

In this work we do not specifically address the standard
problem of memory management for lock-free (and wait-
free) algorithms. If the original lock-free algorithm reclaims
unused objects, then the obtained simulation works well
with it, except that we need to reclaim objects used by the
generated algorithm: the operation records, the operation
record boxes, and the nodes of the help queue. This can
be done using a few (constant) number of hazard pointers
[21] per thread. The implementation is tedious, but does not
introduce a significant difficulty.

All the tests were run on SUN’s Java SE Runtime, ver-
sion 1.6.0. We ran the measurements on 2 systems. The first
is an IBM x3400 system featuring 2 Intel(R) Xeon(R) E5310
1.60GHz quad core processors (overall 8 cores) with a mem-
ory of 16GB and an L2 cache of 4MB per processor. The
second system features 4 AMD Opteron(TM) 6272 2.1GHz
processors, each with 8 cores (overall 32 cores), each run-
ning 2 hyper-threads (overall 64 threads), with a memory of
128GB and an L2 cache of 2MB per processor.

We used a micro-benchmark in which 50% of the opera-
tions are contains, 25% are insert, and 25% are delete. Each
test was run with the number of threads ranging from 1 to
16 in the Xeon, and 1 to 32 in the Opteron. The keys were
randomly and uniformly chosen in the range [1, 1024]. In
each test, each thread executed 100,000 operations overall.
We repeated each test 15 times, and performance averages
are reported in the figures. The maximum standard deviation
is less than 5%. The contention threshold was set to k = 2.
In practice, this means that if one of the three simulation
stages encounters k failed CASes, it gives up the fast path
and moves to the slow path.

Figure 7 compares the four algorithms when running on
the Opteron (the left graph of each couple) and on the Xeon
(right). The figure shows the execution times (seconds) as
a function of the number of threads. The performance of
the wait-free algorithms is comparable to the lock-free al-

Figure 7. Lock-Free versus Wait-Free algorithms. Left:
Opteron. Right: Xeon

gorithms, the difference being 2% on average. We also mea-
sured how frequently the slow path was invoked. The frac-
tion of operations running the slow path is small (up to
1/3,000). This allows the wait-free algorithms to retain sim-
ilar performance to the lock-free algorithms. Still, a minor-
ity of the operations require the help mechanism to guaran-
tee completion in a bounded number of steps, necessary for
achieving wait-freedom.

References
[1] Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made

fast. In STOC, pages 538–547, 1995.

[2] James H. Anderson and Yong-Jik Kim. Fast and scalable
mutual exclusion. In DISC, pages 180–194, 1999.

[3] James H. Anderson and Yong-Jik Kim. Adaptive mutual
exclusion with local spinning. In DISC, pages 29–43, 2000.

[4] James H. Anderson and Mark Moir. Universal construc-
tions for large objects. IEEE Trans. Parallel Distrib. Syst.,
10(12):1317–1332, 1999.

[5] Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A
universal construction for wait-free transaction friendly data
structures. In SPAA, pages 335–344, 2010.

[6] Tyler Crain, Damien Imbs, and Michel Raynal. Towards
a universal construction for transaction-based multiprocess
programs. In ICDCN, pages 61–75, 2012.

[7] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van
Breugel. Non-blocking binary search trees. In PODC, 2010.

[8] Panagiota Fatourou and Nikolaos D. Kallimanis. The redblue
adaptive universal constructions. In DISC, pages 127–141,
2009.

[9] Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-
efficient wait-free universal construction. In SPAA, pages
325–334, 2011.

[10] Faith Ellen Fich, Victor Luchangco, Mark Moir, and Nir
Shavit. Obstruction-free algorithms can be practically wait-
free. In DISC, pages 78–92, 2005.

[11] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists
and skip lists. In PODC’04, pages 50–59, 2004.

[12] Michael Greenwald. Two-handed emulation: how to build
non-blocking implementation of complex data-structures us-
ing dcas. In PODC, pages 260–269, 2002.

[13] Rachid Guerraoui, Michal Kapalka, and Petr Kouznetsov. The
weakest failure detectors to boost obstruction-freedom. Dis-
tributed Computing, 20(6):415–433, 2008.

[14] Timothy L. Harris. A pragmatic implementation of non-
blocking linked-lists. In DISC’01, 2001.

[15] Maurice Herlihy. A methodology for implementing highly
concurrent data structures. In PPOPP, pages 197–206, 1990.

[16] Maurice Herlihy. A methodology for implementing highly
concurrent objects. ACM TOPLAS, 15(5):745–770, 1993.

[17] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008.

[18] Alex Kogan and Erez Petrank. Wait-free queues with multiple
enqueuers and dequeuers. In PPOPP, pages 223–234, 2011.

[19] Alex Kogan and Erez Petrank. A methodology for creating
fast wait-free data structures. In PPOPP, pp. 141–150, 2012.

[20] Leslie Lamport. A fast mutual exclusion algorithm. ACM
Trans. Comput. Syst., 5(1):1–11, 1987.

[21] Maged M. Michael. Hazard pointers: Safe memory reclama-
tion for lock-free objects. IEEE Trans. Parallel Distrib. Syst.,
15(6), 2004.

[22] Mark Moir and James H. Anderson. Wait-free algorithms for
fast, long-lived renaming. Sci. Comput. Program., 25(1):1–39,
1995.

[23] Gadi Taubenfeld. Contention-sensitive data structures and
algorithms. In DISC, pages 157–171, 2009.

[24] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez
Petrank. Wait-free linked-lists. In OPODIS, 2012.

