
Linear-Work Greedy Parallel Approximate

Set Cover and Variants

Guy E. Blelloch Richard Peng Kanat Tangwongsan

Carnegie Mellon University

{guyb, yangp, ktangwon}@cs.cmu.edu

ABSTRACT
We present parallel greedy approximation algorithms for set
cover and related problems. These algorithms build on an
algorithm for solving a graph problem we formulate and
study called Maximal Nearly Independent Set (MaNIS)—a
graph abstraction of a key component in existing work on
parallel set cover.

We derive a randomized algorithm for MaNIS that has
O(m) work and O(log2 m) depth on input with m edges.
Using MaNIS, we obtain RNC algorithms that yield a (1 +
")Hn-approximation for set cover, a (1� 1

e�")-approximation
for max cover and a (4 + ")-approximation for min-sum set
cover all in linear work; and an O(log⇤ n)-approximation
for asymmetric k-center for k logO(1) n and a (1.861 + ")-
approximation for metric facility location both in essentially
the same work bounds as their sequential counterparts.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Theory

Keywords
Parallel algorithms, approximation algorithms, set cover,
max cover, facility location

1. INTRODUCTION
Set cover is one of the most fundamental and well-studied

problems in optimization and approximation algorithms.
This problem and its variants have a wide variety of ap-
plications in the real world, including locating warehouses,
testing faults, scheduling crews on airlines, and allocating
wavelength in wireless communication. Let U be a set of n
ground elements, F be a collection of subsets of U covering U

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SPAA’11, June 4–6, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

(i.e., [S2FS = U), and c : F ! R
+

a cost function. The set
cover problem is to find the cheapest collection of sets A ✓ F
such that [S2AS = U , where the cost of the solution A is
specified by c(A) =

P
S2A c(S). Unweighted set cover (all

weights are equal) appeared as one of the 21 problems Karp
identified as NP-complete in 1972 [Kar72]. Two years later,
Johnson [Joh74] proved that the simple greedy method gives
an approximation that is at most a factor Hn =

Pn
k=1

1

k
from optimal. Subsequently, Chvátal [Chv79] proved the
same approximation bounds for the weighted case. These
results are complemented by a matching hardness result:
Feige [Fei98] showed that unless NP ✓ DTIME(nO(log logn)),
set cover cannot be approximated in polynomial time with a
ratio better than (1� o(1)) lnn. This essentially shows that
the greedy algorithm is optimal.
Not only is greedy set cover optimal but it also gives an

extremely simple O(M) time algorithm for the unweighted
case and O(M logM) time for the weighted case, where
M � n is the sum of the sizes of the sets. In addition, ideas
similar to greedy set cover have been successfully applied
to max k-cover, min-sum set cover, k-center, and facility
location, generally leading to optimal or good-quality, yet
simple, approximation algorithms.
From a parallelization point of view, however, the greedy

method is in general di�cult to parallelize, because at each
step, only the highest-utility option is chosen and every sub-
sequent step is likely to depend on the preceding one. Berger,
Rompel, and Shor [BRS94] (BRS) showed that the greedy set
cover algorithm can be “approximately” parallelized by buck-
eting1 utility values (in this case, the number of new elements
covered per unit cost) by factors of (1 + ") and processing
sets within a bucket in parallel. Furthermore, the number of
buckets can be kept to O(log n) by preprocessing. However,
deciding which sets within each bucket to choose requires
some care: although at a given time, many sets might have
utility values within a factor of (1+ ") of the current best op-
tion, the sets taken together might not cover as many unique
elements as their utility values imply—shared elements can
be counted towards only one of the sets. BRS developed a
technique to subselect within a bucket by first further buck-
eting by cost, then set size, and finally element degree, and
then randomly selecting sets with an appropriate probability.
This leads to an O(log5 M)-depth and O(m log4 M)-work
randomized algorithm, giving a ((1 + ")Hn)-approximation
on a PRAM. Rajagopalan and Vazirani [RV98] improved the

1The bucketing approach has also been used for other al-
gorithms such as vertex cover [KVY94] and metric facility
location [BT10].

Laxman Dhulipala

Laxman Dhulipala

Laxman Dhulipala

depth to O(log3(Mn)) with work O(M log2 M) but at the
cost of a factor of two in the approximation (essentially a
factor-2(1 + ")Hn approximation).
In comparison to their sequential counterparts, none of

these previous set-cover algorithms are work e�cient—their
work is asymptotically more than the time for the optimal
sequential algorithm.2 Work e�ciency is important since it
allows an algorithm to be applied e�ciently to both a modest
number of processors (one being the most modest) and a
larger number. Even with a larger number of processors,
work-e�cient algorithms limit the amount of resources used
and hence presumably the cost of the computation.

Our Contributions: In this paper, we abstract out the
most important component of the bucketing approach, which
we refer to as Maximal Nearly Independent Set (MaNIS),
and develop an O(m) work and O(log2 m) depth algorithm
for an input graph with m edges, on an EREW PRAM (work
is the total operation count, and depth the number of steps on
the PRAM). The MaNIS problem is to find a subset of sets
such that they are nearly independent (their elements do not
overlap too much), and maximal (no set can be added without
introducing too much overlap). Since we have to look at the
input, which has size O(m), the algorithm is work e�cient.
The MaNIS abstraction allows us to reasonably easily apply
it to several set-cover like problems. In particular, we develop
the following work-e�cient approximation algorithms:

— Set cover. We develop an O(M) work, O(log3 M) depth
(parallel time) algorithm with approximation ratio (1+ ")Hn.
For the unweighted case, the same algorithm gives a (1 +
")(1 + ln(n/opt)) approximation where opt is the optimal
set-cover cost.
— Max cover. We develop an O(M) work, O(log3 M) depth

prefix-optimal algorithm with approximation ratio (1�1/e�
"). This significantly improves the work bounds over a recent
result [CKT10].
— Min-sum set cover. We develop anO(M) work, O(log3 M)

depth algorithm with an approximation ratio of (4 + ")Hn.
We know of no other RNC parallel approximation algorithms
for this problem.
— Asymmetric k-center. We develop an O(p(k + log⇤ n))

work, O(k log n+ log3 n log⇤ n) depth algorithm with approx-
imation ratio O(log⇤ n), where p = n(n� 1)/2 is the size of
the table of distances between elements. The algorithm is
based on the sequential algorithm of Panigrahy and Vish-
wanathan [PV98] and we know of no other RNC parallel
approximation algorithms for this problem.
— Metric facility location. We develop an O(p log p) work,

O(log4 p) depth algorithm with approximation ratio (1.861 +
"), where p = |F | ⇥ |C| is the size of the distance table.
The algorithm is based on the greedy algorithm of Jain et
al. [JMM+03] and improves on the approximation ratio of
(3 + ") for the best previous RNC algorithm [BT10].

All these algorithms run on a CRCW PRAM but rely on
only a few primitives discussed in the next section, and thus
should be easily ported to other models.

2. PRELIMINARIES AND NOTATION
For a graph G, we denote by degG(v) the degree of the

vertex v in G and use NG(v) to denote the neighbor set of

2We note that the sequential time for a weighted (1 + ")Hn-
approximation for set-cover is O(M) when using bucketing.

the node v. Furthermore, we write u ⇠ v for u is adjacent
to v. Extending this notation, we write NG(X) to mean the
neighbors of the vertex set X, i.e., NG(X) = [w2XNG(w).
We drop the subscript (i.e., writing deg(v), N(v), and N(X))
when the context is clear. Let V (G) and E(G) denote re-
spectively the set of nodes and the set of edges. We use
the notation eO(f(n)) to mean O(f(n) polylog(n)) and [k]
to denote the set {1, 2, . . . , k}. An event happens with high
probability (w.h.p.) if it happens with probability exceeding
1� n�⌦(1). We analyze the algorithms in the PRAM model.
We use both the EREW (Exclusive Read Exclusive Write)
and CRCW (Concurrent Read Concurrent Write) variants of
the PRAM, and for the CRCW, assume an arbitrary value is
written. For an input of size n, we assume that every memory
word has O(logn) bits. In our analysis, we are primarily
concerned with minimizing the work while achieving poly-
logarithmic depth and less concerned with polylogarithmic
factors in the depth since such measures are typically not
robust across models. All algorithms we develop are in NC

or RNC, so they have polylogarithmic depth.
The algorithms in this paper are all based on a bipartite

graph G = (A[B,E), E ✓ A⇥B. In set cover, for example,
we use A to represent the subsets F and B for the ground
elements U . In addition to operating over the vertices and
edges of the graph, the algorithms need to copy a value from
each vertex (on either side) to its incident edges, need to
“sum” values from the incident edges of each vertex using a
binary associative operator, and given A0 ✓ A and B0 ✓ B
need to subselect the graph G0 = (A0 [B0, (A0 ⇥B0) \ E).

For analyzing bounds, we assume that G is represented in
a form of adjacency array we refer to as the packed represen-
tation of G. In this representation, the vertices in A and B
and the edges in E are each stored contiguously, and each
vertex has a pointer to a contiguous array of pointers to its
incident edges. With this representation, all the operations
mentioned in the previous paragraph can be implemented
using standard techniques in O(|G|) work and O(log |G|)
depth on an EREW PRAM, where |G| = |A|+ |B|+ |E|. The
set-cover algorithm also needs the following operation for
constructing the packed representation.

Lemma 2.1 Given a bipartite graph G = (A [B,E) rep-
resented as an array of a 2 A, each with a pointer to an
array of integer identifiers for its neighbors in B, the packed
representation of G can be generated with O(|G|) work and
O(log2 |G|) depth (both w.h.p.) on a CRCW PRAM.

Proof. We note that the statement of the lemma allows
for the integer identifiers to be sparse and possibly much
larger than |B|. To implement the operation use duplicate
elimination over the identifiers for B to get a unique rep-
resentative for each b 2 B and give these representatives
contiguous integer labels in the range [|B|]. This can be
done with hashing in randomized O(|G|)-work O(log2 |G|)-
depth [BM98]. Now that the labels for B are bounded by
[|B|] we can use a bounded integer sort [RR89] to collect all
edges pointing to the same b 2 B and generate the adjacency
arrays for the vertices in B in randomized O(n) work and
O(log n) depth on a (arbitrary) CRCW PRAM.

We will also use the following.

Lemma 2.2 If y
1

, . . . , yn 2 (0, 1] are drawn independently
such that Pr

⇥
xi 2

�
j�1

n , j
n

⇤⇤ 1

n for all i, j = 1, . . . , n, then

Laxman Dhulipala

Laxman Dhulipala

the keys y
1

, . . . , yn can be sorted in expected O(n) work and
O(log n) depth on an CRCW PRAM

Proof. Use parallel radix sort to bucket the keys into
B

1

, . . . , Bn, where Bj contains keys between
�
j�1

n , j
n

⇤
. This

requires O(n) work and O(logn) depth. Then, for each
Bi, in parallel, we can sort the elements in the bucket in
O(|Bi|2) work O(|Bi|) depth using, for example, a parallel
implementation of the insertion sort algorithm. The work
to sort these buckets is E

⇥P
i |Bi|2

⇤ 2n. Furthermore,
balls-and-bins analysis shows that for all i, |Bi| O(logn)
with high probability. Thus, the depth of the sorting part is
bounded by E[maxi |Bi|] O(log n).

3. MANIS
We motivate the study of Maximal Nearly Independent

Set (MaNIS) by revisiting existing parallel algorithms for
set cover. These algorithms define a notion of utility—the
number of new elements covered per unit cost—for each
available option (set). Each iteration then involves identifying
and working on the remaining sets that have utility within
a (1 + ") factor of the current best utility value—and for
fast progress, requires that the best option after an iteration
has utility at most a (1 + ") factor smaller than before.
Among the sets meeting the criterion, deciding which ones
to include in the final solution is non-trivial. Selecting any
one of these sets leads to an approximation ratio within
(1+ ") of the strictly greedy algorithm but may not meet the
fast progress requirement. Including all of them altogether
leads to arbitrarily bad bounds on the approximation ratio
(many sets are likely to share ground elements) but does
ensure fast progress. To meet both requirements, we would
like to select a “maximal” collection of sets that have small,
bounded overlap—if a set is left unchosen, its utility must
have dropped su�ciently. This leads to the following graph
problem formulation, where the input bipartite graph models
the interference between sets.

Definition 3.1 ((", �)-MaNIS) Let ", � > 0. Given a bi-
partite graph G = (A [B,E), we say that a set J ✓ A is a
(", �) maximal nearly independent set, or (", �)-MaNIS, if
(1) Nearly Independent. The chosen options do not inter-

fere much with each other, i.e.,

|N(J)| � (1� � � ")
X

a2J

|N(a)|.

(2) Maximal. The unchosen options have significant over-
laps with the chosen options, i.e., for all a 2 A \ J ,

|N(a) \N(J)| < (1� ")|N(a)|

The first condition in this MaNIS definition only provides
guarantees on average—it ensures that on average each cho-
sen option does not overlap much with each other. It is
often desirable to have a stronger guarantee that provides
assurance on a per-option basis. This motivates the following
strengthened definition, which implies the previous definition.

Definition 3.2 (Ranked (", �)-MaNIS) Let ", � > 0. Given
a bipartite graph G = (A [B,E), we say that a set J =
{s

1

, s
2

, . . . , sk} ✓ A is a ranked (", �) maximal nearly inde-
pendent set, or a ranked (", �)-MaNIS for short, if

(1) Nearly Independent. There is an ordering (not part
of the MaNIS solution) s

1

, s
2

, . . . , sk such that each
chosen option si is almost completely independent of
s
1

, s
2

, . . . , si�1

, i.e., for all i = 1, . . . , k,

|N(si) \N({s
1

, s
2

, . . . , si�1

})| � (1� � � ")|N(si)|.
(2) Maximal. The unchosen options have significant over-

laps with the chosen options, i.e., for all a 2 A \ J ,
|N(a) \N(J)| < (1� ")|N(a)|.

Under this definition, an algorithm for ranked MaNIS only
has to return a set J but not the ordering. Furthermore, the
following fact is easy to verify:

Fact 3.3 If J is a ranked (", �)-MaNIS, then every J 0 ✓ J
satisfies |N(J 0)| � (1� � � ")

P
j2J0 |N(j)|.

Connection with previous work: Both versions of Ma-

NIS can be seen as a generalization of maximal independent
set (MIS). Indeed, when � = " = 0, the problem is the
maximal set packing problem, which can be solved using
a maximal independent set algorithm [KW85, Lub86], al-
beit with O(logn) more work than the simple sequential
algorithm that solves both versions of MaNIS in O(|E|)
sequential time.
Embedded in existing parallel set-cover algorithms are

steps that can be extracted to compute MaNIS. We ob-
tain from Berger et al. [BRS94] (henceforth, the BRS algo-
rithm) an RNC

4 algorithm for computing (", 8")-MaNIS in
O(|E| log3 n) work. Similarly, we extract from Rajagopalan
and Vazirani [RV98] (henceforth, the RV algorithm) an RNC

2

algorithm for computing ranked ("2, 1� 1

2(1+") � "2)-MaNIS

in O(|E| log |E|) work.
Unfortunately, neither of the existing algorithms, as ana-

lyzed, is work e�cient. In addition, the existing analysis of
the RV algorithm places a restriction on �: even when " is
arbitrarily close to 0, we cannot have � below 1

2

.

3.1 Linear-Work Ranked MaNIS
We present an algorithm for the ranked MaNIS problem.

Our algorithm is inspired by the RV algorithm. Not only
is the algorithm work e�cient but also it removes the 1

2

restriction on �, matching and surpassing the guarantees
given by previous algorithms. To obtain these bounds, we
need a new analysis that di↵ers from that of the RV algorithm.
Our algorithm can be modified to compute ranked (", �)-
MaNIS for any 0 < " < � in essentially the same work and
depth bounds (with worse constants); however, for the sake
of presentation, we settle for the following theorem:

Theorem 3.4 (Ranked MaNIS) Fix " > 0. For a bipar-
tite graph G = (A [B,E) in packed representation there
exists a randomized EREW PRAM algorithm MaNIS

(",3")(G)
that produces a ranked (", 3")-MaNIS in O(|E|) expected
work and O(log2 |E|) expected depth.

Presented in Algorithm 3.1 is an algorithm for computing
ranked MaNIS. To understand this algorithm, we will first
consider a natural sequential algorithm for (", 3")-MaNIS—
and discuss modifications that have led us to the parallel
version. To compute MaNIS, we could first pick an ordering
of the vertices of A and consider them in this order: for

Laxman Dhulipala

Algorithm 3.1 MaNIS

(",3") — a parallel algorithm for com-
puting ranked (", 3")-MaNIS

Input: a bipartite graph G = (A [B,E).

Output: J ✓ A satisfying Definition 3.2.

Initialize G(0) = (A(0) [B(0), E(0)) = (A [B,E), and
for each a 2 A, D(a) = |NG(0) (a)|.
Set t = 0. Repeat the following steps until A(t) is empty:

1. For a 2 A(t), randomly pick xa 2R [0, 1]

2. For b 2 B(t), let '(t)(b) be b’s neighbor with maximum xa

3. Pick vertices of A(t) chosen by su�ciently many in B(t):

J(t) =
n

a 2 A(t)
�

�

�

X

b2B(t)

1{'(t)
(b)=a} � (1� 4")D(a)

o

.

4. Update the graph by removing J and its neighbors, and
elements of A(t) with too few remaining neighbors:
B(t+1) = B(t) \NG(t) (J(t))

A(t+1) = {a 2 A(t)\J(t) : |NG(t) (a)\B(t+1)| � (1�")D(a)}
E(t+1) = E(t) \ (A(t+1) ⇥B(t+1))

5. t = t+ 1

Finally, return J = J(0) [· · · [J(t�1).

each a 2 A, if a has at least (1 � 4")D(a) neighbors, we
add a to the output and delete its neighbors; otherwise, set
it aside. Thus, every vertex added certainly satisfies the
nearly-independent requirement. Furthermore, if a vertex is
not added, its degree must have dropped below (1� ")D(a),
which ensures the maximality condition.

Algorithm 3.1 achieves parallelism in two ways. First,
we adapt the selection process so that multiple vertices can
be chosen together at the same time. Unlike the sequential
algorithm, the parallel version can decide whether to include a
vertex a 2 A without knowing the outcomes of the preceding
vertices. This is done by making the inclusion condition more
conservative: Assign each b 2 B to the first a 2 A in the
chosen ordering—regardless of whether a will be included
in the solution. Then, for each a 2 A, include it in the
solution if enough of its neighbors are assigned to it. This
step is highly parallel and ensures that every vertex added
satisfies the nearly-independent requirement. Unfortunately,
this process by itself may miss vertices that must be included.

Second, we repeat the selection process until no more ver-
tices can be selected but ensure that the number of iterations
is small. As the analysis below shows, a random permutation
allows the algorithm to remove a constant fraction of the
edges, making sure that it will finish in a logarithmic number
of iterations. Note that unlike before, the multiple iterations
make it necessary to distinguish between the original degree
of a vertex, D(a), and its degree in the current iteration
(which we denote by deg(a) in the proof). Furthermore, we
need an clean-up step after each iteration to eliminate ver-
tices that are already maximal so that they will not hamper
progress in subsequent rounds.

Running Time Analysis: To prove the work and depth
bounds, consider the potential function

�(t) def

=
X

a2A(t)

|NG(t)(a)|,

which counts the number of remaining edges. The following
lemma shows that su�cient progress is made in each step:

A

B
b1 b2 b3 bp+1 bn'+1

...bp

...... a

low-degree high-degree

Figure 1: MaNIS analysis: for each a 2 A(t), order its
neighbors so that NG(t)(a) = {b

1

, . . . , bn0} and deg(b
1

)
deg(b

2

) · · · deg(bn0), where n0 = degG(t)(a).

Lemma 3.5 For t � 0, E
h
�(t+1)

i
 (1� c)�(t), where

c = 1

4

"2(1� ").

Before proceeding with the proof, we o↵er a high-level
sketch. We say a vertex a 2 A(t) deletes an edge (a0, b) if
a 2 J(t) and '(t)(b) = a. In essence, the proof shows that for
a 2 A(t), the expected number of edges a deletes, denoted
by �a in the proof, is proportional to the degree of a. If a
has few neighbors, it su�ces to consider the probability that
all neighbors select a. Otherwise, the proof separates the
neighbors of a into high- and low- degree groups and analyzes
�a by averaging over possible values of xa. In particular, it
considers a ya (i.e., 1 � "/ deg(bp) in the proof) such that
for all xa � ya, there are likely su�ciently many low-degree
neighbors that select a to ensure with constant probability
that a is in J(t). Then, the proof shows that there is su�cient
contribution to �a from just the high-degree neighbors and
just when xa � ya (that is when a is likely in J(t)). This is
formalized in the proof below.

Proof. Consider an iteration t. Let deg(x) = degG(t)(x)
and �a = 1{a2J(t)}

P
b:'(t)

(b)=a deg(b). Thus, when a is

included in J(t), �a is the sum of the degrees of all neighbors
of a that are assigned to a (by '(t)). It is zero otherwise
if a 62 J(t). Since '(t) : B(t) ! A(t) maps each b 2 B(t) to
a unique element in A(t), the sum of �a over a is a lower
bound on the number edges we lose in this round. That is,

�(t) � �(t+1) �
X

a2A(t)

�a,

so it su�ces to show that for all a 2 A(t), E[�a] � c · deg(a).
Let a 2 A(t) be given and assume WLOG that NG(t)(a) =

{b
1

, . . . , bn0} such that deg(b
1

) deg(b
2

) · · · deg(bn0).
(as shown in Figure 1). Now consider the following cases:
— Case 1. a has only a few neighbors: Suppose n0 < 2

" . Let E1
be the event that xa = max{xa0 : a0 2 NG(t)(NG(t)(A(t)))}.
Then, E

1

implies that (1) a 2 J(t) and (2) '(t)(bn0) = a.
Therefore,

E[�a] � Pr[E
1

] · deg(bn0) � 1

n0 � c · deg(a),
because |NG(t)(NG(t)(A(t)))| n0·deg(bn0) and n0 = deg(a) <
2/".
— Case 2. a has many neighbors, i.e., n0 � 2

" . Partition
the neighbors of a into low- and high- degree elements as
follows. Let p = b(1� ") deg(a)c, L(a) = {b

1

, . . . , bp}, and
H(a) = {bp+1

, . . . , bn0}. To complete the proof for this case,
we rely on the following claim.

Claim 3.6 Let select(t)a = {b 2 B(t) : '(t)(b) = a}, and E
2

be the event that |L(a) \ select(t)a | 2"|L(a)|. Then, (i) for
� "/ deg(bp), Pr[E

2

|xa = 1� �] � 1

2

; and (ii) for b 2 H(a)

and � "/ deg(b), Pr
h
'(t)(b) = a|E

2

, xa = 1� �
i
� 1� ".

Note that E
2

implies |select(t)a | � n0 � "n0 � 2"n0 � (1 �
4")D(a), because n0 � (1� ")D(a). This in turn means that
E
2

implies a 2 J(t). Applying the claim, we establish

E[�a] �
X

b2H(a)

deg(b)Pr
h
E
2

^ '(t)(b) = a
i

�
X

b2H(a)

Z "
deg(b)

�=0

deg(b)Pr
⇥E

2

��xa = 1� �
⇤

Pr
h
'(t)(b) = a

��E
2

, xa = 1� �
i
d�

�
X

b2H(a)

"
1
2
(1� ")

� c · deg(a),
where the final step follows because |H(a)| � "n0 � 1.

Proof of Claim 3.6: To prove (i), letX
def

= |L(a)\select(t)a | =P
j2L(a) 1{j 62select

(t)
a }, so

E[X|xa = 1� �] =
X

j2L(a)

Pr
h
j /2 select(t)a |xa = 1� �

i
.

Then, note that j 2 select(t)a i↵. xa = max{xi : i 2 NG(t)(j)}.
Thus, for j 2 L(a),

Pr
h
j /2 select(t)a |xa = 1� �

i
 1�

⇣
1� "

deg(bp)

⌘
deg(j)

 ",

and so E[X|xa = 1� �] "|L(a)|. By Markov’s inequality,
we have Pr[E

2

|xa = 1� �] � 1� "
2" = 1

2

.
We will now prove (ii). Consider that for i 2 NG(t)(b)\{a},

Pr[xi > xa|E2

, xa = 1� �] �. Union bounds give

Pr
h
'(t)(b) = a|E

2

, xa = 1� �
i

� 1�
X

i2N
G(t) (b)\{a}

�

� 1� ".

⌅
Each iteration can be implemented in O(�(t)) work and

O(log�(t)) depth on an EREW PRAM since beyond trivial
parallel application and some summations, the iteration only
involves the operations on the packed representation of G
discussed in Section 2. Since �(t) decreases geometrically (in
expectation), the bounds follow. Algorithm 3.1 as described
selects random reals xa between 0 and 1. But it is su�cient
for each a to use a random integer with O(logn) bits such
that w.h.p., there are no collisions. In fact, since the xa’s are
only compared, it su�ces to use a random permutation over
A since the distribution over the ranking would be the same.

4. LINEAR-WORK SET COVER
As our first example, in this section, we apply MaNIS to

parallelize a greedy approximation algorithm for weighted
set cover. Specifically, we prove the following theorem:

Theorem 4.1 Fix 0 < " < 1

2

. For a set system (U ,F),
where |U| = n, there is a randomized (1+")Hn-approximation

Algorithm 4.1 SetCover — parallel greedy set cover.

Input: a set cover instance (U ,F , c).

Output: a collection of sets covering the ground elements.

i. Let � = maxe2U minS2F c(S),
M =

P

S2F |S|,
T = log

1/(1�")(M
3/"),

and � = M2

"·� .

ii. Let (A;A
0

, . . . , AT) = Prebucket(U ,F , c) and U
0

= U
iii. For t = 0, . . . , T , perform the following steps:

1. Remove deleted elements from sets in this bucket:
A0

t = {S \ Ut : S 2 At}
2. Only keep sets that still belong in this bucket:

A00
t = {S 2 A0

t : c(S)/|S| > � · (1� ")t+1}.
3. Select a maximal nearly independent set from the bucket:

Jt = MaNIS

(",3")(A
00
t).

4. Remove elements covered by Jt:
Ut+1

= Ut \Xt where Xt = [S2JtS

5. Move remaining sets to the next bucket:
At+1

= At+1

[(A0
t \ Jt)

iv. Finally, return A [J
0

[· · · [JT .

for (weighted) set cover that runs in O(M) expected work
and O(log3 M) expected depth on a CRCW PRAM, where
M =

P
S2F |S|.

We describe a parallel greedy approximation algorithm
for set cover in Algorithm 4.1. To motivate the algorithm,
we discuss three ideas crucial for transforming the standard
greedy set-cover algorithm into a linear-work algorithm with
substantial parallelism: (1) approximate greedy through
bucketing, (2) prebucketing and lazy bucket transfer, and (3)
subselection via MaNIS. Despite the presence of some these
ideas in previous work, it is the combination of our improved
MaNIS algorithm and careful lazy bucket transfer that is
responsible for better work and approximation bounds.
Like in previous algorithms, bucketing creates opportuni-

ties for parallelism at the round level, by grouping together
sets by their coverage-per-unit-cost values in powers of (1�").
Consequently, there will be at most O(log

1+" ⇢) buckets (also
rounds), where ⇢ is the ratio between the largest and the
smallest coverage-per-unit-cost values. This, however, raises
several questions (which are solved by ideas (2) and (3)).
First, how can we make ⇢ small and keep the contents of

the relevant buckets “fresh” in linear work? As detailed in
Lemma 4.2, the algorithm relies on a subroutine Prebucket

that first preprocesses the input to keep ⇢ polynomially
bounded by setting aside certain “cheap” sets that will be
included in the final solution by default and throwing away
sets that will never be used in the solution. It then classifies
the sets into buckets A

0

, A
1

, . . . AT by their utility; however,
this initial bucketing will be stale as the algorithm progresses.
While we cannot a↵ord to reclassify the sets in every round,
it su�ces to maintain an invariant that each set in S 2 Ai

satisfies |S\Ut|/c(S) � ·(1�")i. Further, we make sure that
the bucket that contains the current best option is fresh—and
move the sets that do not belong there accordingly.
Second, what to do with the sets in each bucket to satisfy

both the bucket invariant and the desired approximation ratio?
This is where we apply MaNIS. As previously discussed in
Section 3, MaNIS allows the algorithm to choose nearly

non-overlapping sets, which helps bound the approximation
guarantees and ensures that sets which MaNIS leaves out
can be moved to the next bucket and satisfy the bucket
invariant.
In the following lemma and proof, we use the definitions

for �, M , T , and � from Algorithm 4.1. Further, let opt

denote the optimal cost.

Lemma 4.2 There is an algorithm Prebucket that takes as
input a set system (U ,F , c) and produces a set A such that
c(A) " · opt and buckets A

0

, . . . , AT such that

1. for each S 2 F \ A, either S costs more than M� or
S 2 Ai for which c(S)/|S| 2 (� · (1� ")i+1, � · (1� ")i].

2. there exists a set cover solution costing at most opt

using sets from A [A
0

[A
1

[· · · [AT ;

3. the algorithm runs in O(M) work and O(logM) depth
on a CRCW PRAM.

Proof. We rely on the following bounds on opt [RV98]:
� opt M�. Two things are clear as a consequence: (i) if
c(S) " · �

M , S can be included in A, yielding a total cost at
most "� " · opt. (ii) if c(S) > M�, then S can be discarded
(S is not part of any optimal solution).

Thus, we are left with sets costing between " · �
M and

M�. Compute |S|/c(S) for each remaining set S, in parallel,
and store S in Ai such that c(S)/|S| 2 (� · (1 � ")i+1,� ·
(1 � ")i]. We know that 1/(M�) c(S)/|S| M2/("�) =
�, so the buckets are numbered between i = 0 and i =
log

1/(1�")(M
3/") = T .

Computing M , �, and c(S)/|S| for all sets S can be done in
O(M) work and O(logM) depth using parallel sums. Once
each set knows its bucket based on c(S)/|S|, a stable integer
sort over integers in the range [O(logM)] can be used to
collect them into buckets with the same work and depth
bounds [RR89].

Approximation Guarantees: We follow a standard proof
in Vazirani [Vaz01]. It should be noted that although we do
not mention LPs here, the proof given below is similar in
spirit to the dual-fitting proof presented by Rajagopalan and
Vazirani [RV98]. Let pt = 1

� (1� ")�(t+1). For each e 2 U , if
e is covered in iteration t, define the price of this element to
be p(e) = pt. That is, every element covered in this iteration
has the same price pt. Now, Step 2 ensures that if S 2 A00

t

can cover e, then c(S)/|S| p(e), where |S| is the size of
S after Step 2 in iteration t. Let Xt = [S2JtS be the set
of elements covered in iteration t. The near independent
property of (", 3")-MaNIS indicates that |Xt| = |N(Jt)| �
(1� 4")

P
S2Jt

N(S), where N(·) here is the neighborhood
set in A00

t . Thus, c(J0

[· · · [JT) can be written as

X

t

X

S2Jt

c(S)
|S| · |S|

X

t

pt
X

S2Jt

|S| 1
1� 4"

X

e2U
p(e).

Let O⇤ be any optimal solution. Consider a set S⇤ 2 O⇤.
Since all buckets t0 < t are empty, we know that pt
1

1�" minS2A00
t

c(S)

|S| . Furthermore, for each e 2 S⇤, let te
denote the iteration in which e was covered. By greedy
properties (as argued in [RV98, Vaz01]),

X

e2S⇤

min
S2G00

te

c(S)
|S|

⇣
1 +

1
2
+

1
3
+ . . .

1
|S⇤|

⌘
c(S⇤).

Hence, c(J
0

[· · ·[JT) 1

1�5"

P
S⇤2O⇤ H|S⇤|c(S

⇤) 1

1�5"Hn·
opt (1 + "0)Hn · opt (using " = O("0)), as promised.

Implementation and Work and Depth Bounds: To
analyze the cost of the algorithm, we need to be more specific
about the representation of all structures that are used. We
assume the sets S 2 F are given unique integer identifiers
[|F|], and similarly for the elements e 2 U . Each set keeps a
pointer to an array of identifiers for its elements, and each
bucket keeps a pointer to an array of identifiers for its sets.
The sets can shrink over time as elements are filtered out in
Step 1 of each iteration of the algorithm. We keep a Boolean
array indicating which of the elements from U remain in Ut.
Let A(t) be the snapshot of At at the beginning of iteration
t of Algorithm 4.1, and Mt =

P
S2A(t) |S|.

Claim: Iteration t of Algorithm 4.1 can be accomplished in
expected O(Mt) work and O(log2 Mt) depth on the random-
ized CRCW PRAM.

Steps 1 and 2 use simple filtering on arrays of total length
O(Mt), which can be done with prefix sums. Step 3 requires
converting adjacency arrays for each set in A00

t to the packed
representation needed by MaNIS. The indices of the elements
might be sparse, but this conversion can be done using
Lemma 2.1. The cost of this conversion, as well as the cost
of running MaNIS, is within the claimed bounds. Step 4
and 5 just involve setting flags, a filter, and an append, all
on arrays of length O(Mt).
Now there are O(logM) iterations, and Prebucket has

depthO(logM), so the overall depth is bounded byO(log3 M).
To prove the work bound, we will derive a bound on

P
t Mt.

We note that every time a set is moved from one bucket to
the next its size decreases by a constant factor, and hence
the total work attributed to each set is proportional to its
original size. More formally, we have the following claim:

Claim: If S 2 A(t), |S| c(S) · � · (1� ")t.

This claim can be shown inductively: For any set S 2
F , Prebucket guarantees that the bucket that S went into
satisfies the claim. Following that, this set can be shrunk
and moved (Steps 1, 2, and 5). It is easy to check that the
claim is satisfied (by noting Steps 2 and 5’s criteria and that
sets not chosen by MaNIS are shrunk by an " fraction).

By this claim, the total sum
P

t Mt is at most

X

t

X

S2A(t)

c(S) · � · (1� ")t
X

S2F

1
"
· c(S)� · (1� ")tS ,

where tS is the bucket index of S in the initial bucketing.
Furthermore, Lemma 4.2 indicates that |S| � c(S) · � · (1�
")tS+1, showing that

P
t Mt = O(1"M) as " 1

2

. Since the
work on each step is proportional to Mt, the overall work is
O(1"M).

5. SET COVERING VARIANTS
Using the SetCover algorithm from the previous section,

we describe simple changes to the algorithm or the analysis
that results in solutions to variants of set cover. In this
section, we will be working with unweighted set cover.

Ordered vs. Unordered. We would like to develop algo-
rithms for prefix-optimal max cover and min-sum set cover,
using our set-cover algorithm; however, unlike set cover,
these problems want an ordering on the chosen sets—not

just an unordered collection. As we now describe, minimal
changes to the SetCover algorithm will enable it to output
an ordered sequence of sets which closely approximate the
greedy behavior. Specially, we will give an algorithm with
the following property3: Let T ✓ U be given. Suppose there
exist ` sets covering T , and our parallel algorithm outputs
an ordered collection S

1

, . . . , Sp covering U , then

Lemma 5.1 For any i p, the number of elements in T
freshly covered by Si, i.e., |Si \Ri|, is at least (1� 5")|Ri|/`,
where Ri = T \ ([j<iSj) contains the elements of T that
remain uncovered after choosing S

1

, . . . , Si�1

.

We modify the SetCover algorithm as follows. Make MaNIS
returns a totally ordered sequence, by sorting each J(t) by
their xa’s values and stringing together the sorted sequences
J(0), J(1), . . . ; this can be done in the same work-depth
bounds (Lemma 2.2) in CRCW. Further, modify SetCover

so that (1) Prebucket only buckets the sets (but will not
throw away sets nor eagerly include some of them) and (2)
its Step iv. returns a concatenated sequence, instead of a
union. Again, this does not change the work-depth bound
but outputs an ordered sequence.
Next, we show that the output sequence has the claimed

property by proving the following technical claim (variables
here refer to those in Algorithm 4.1). Lemma 5.1 is a direct
sequence of this claim (note that the sets we output come
from J

0

, J
1

, . . . in that order).

Claim 5.2 For all t � 0, if bJt ✓ Jt and bXt = [S2 bJt
S, then

| bXt \ T | � (1� 5") · | bJt| · |Qt|/`, where Qt = T \ ([t0<tXt0).

Proof. Let t � 0. By our assumption, there exist ` sets
that fully cover Qt. An averaging argument shows that
there must be a single set, among the remaining sets, with a
coverage ratio of at least |Qt|/`. Since at the beginning of
iteration t, we have At0 = ; for t0 < t, it follows that ⌧t �
|Qt|/`, where ⌧t = � · (1� ")t. Furthermore, all sets S 2 A00

t

have the property that |S| � ⌧t(1�"). Furthermore, Fact 3.3

guarantees that bJt covers, among T , at least |N(bJt)| � (1�
4")

P
j2 bJt

|N(j)| � (1� 4")(1� ")⌧t| bJt| � (1� 5")| bJt||Qt|/`,
proving the lemma.

5.1 Max Cover
The max k-cover problem takes as input an integer k > 0

and a set system (generally unweighted), and the goal is to
find k sets that cover as many elements as possible. The
sequential greedy algorithm gives a (1� 1/e)-approximation,
which is tight assuming standard complexity assumptions. In
the parallel setting, previous parallel set-covering algorithms
do not directly give (1� 1

e � ")-approximation. But in the
related MapReduce model, Chierichetti et al. [CKT10] give a
1�1/e�"-approximation, which gives rise to a O(m log3 M)-
work algorithm in PRAM, where M =

P
S2F |S|. This is

not work e�cient compared to the greedy algorithm, which
runs in at most O(M logM) time for any k.

In this section, we give a factor-(1� 1

e � ") prefix optimal
algorithm for max cover. As in Chierichetti et al. [CKT10],

3This is the analog of the following fact from the sequential
greedy algorithm [You95, PV98]: if there exist ` sets covering
T , and greedy picks sets �

1

, . . . ,�p (in that order) covering
U , then for i p, the number of elements in T freshly covered
by �i is at least |Ri|/`, where Ri = T \ ([j<i�j).

we say that a sequence of sets S
1

, S
2

, . . . , Sp covering the
whole ground elements is factor-� prefix optimal if for all
k p, |[ik Si| � � · optk, where optk denotes the opti-
mal coverage using k sets. More specifically, we prove the
following theorem:

Theorem 5.3 Fix 0 < " < 1

2

. There is a factor-(1� 1

e � ")
prefix optimal algorithm the max cover problem requiring
O(M) work and O(log3 M) depth, where M =

P
S2F |S|.

Proof. Use the algorithm from Lemma 5.1, so the work-
depth bounds follow immediately from set cover. To argue
prefix optimality, let k be given and OPT k ✓ F be an
optimal max k-cover solution. Applying Lemma 5.1 with
T = OPT k gives that |Ri+1

| |Ri|(1 � 1

k (1 � 5")) and
|R

1

| = |OPTk |. Also, we know that using S
1

, . . . , Sk, we
will have covered at least OPT k � |Rk+1

| elements of OPT k.
By unfolding the recurrence, we have OPT k � |Rk+1

| �
OPT k �OPT k · exp{�(1� 5")}. Setting " = e

5

"0 completes
the proof.

5.2 Special Case: Unweighted Set Cover
When the sets all have the same cost, we can derive a

slightly di↵erent and stronger form of approximation guaran-
tees for the same algorithm. We apply this bound to derive
guarantees for asymmetric k-center in Section 5.4. The fol-
lowing corollary can be derived from Lemma 5.1 in a manner
similar to the max-cover proof; we omit the proof in the
interest of space.

Corollary 5.4 Let 0 < " 1

2

. For an unweighted set cover
instance, set cover can be approximated with cost at most
opt(1 + ")(1 + ln(n/opt)), where opt is the cost of the optimal
set cover solution.

5.3 Min-Sum Set Cover
Another important and well-studied set covering problem

is the min-sum set cover problem: given a set system (U ,F),
the goal is to find a sequence S

1

, . . . , Sn0 to minimize the
cost cost(hS

1

, . . . , Sn0i) def

=
P

e2U ⌧(e), where ⌧(e)
def

= min{i :
e 2 Si}. Feige et al. [FLT04] (also implicit in Bar-Noy et
al. [BNBH+98]) showed that the standard set cover algorithm
gives a 4-approximation, which is optimal unless P = NP.
The following theorem shows that this carries over to our
parallel set cover algorithm:

Theorem 5.5 Fix 0 < " 1

2

. There is a parallel (4 + ")-
approximation algorithm for the min-sum set cover problem
that runs in O(M) work and O(log3 M) depth.

Proof. Consider the modified algorithm in Lemma 5.1.
Suppose it outputs a sequence of sets Alg = hS

1

, S
2

, . . . , Sn0i
covering U , and an optimal solution is O⇤ = hO

1

, . . . , Oqi.
Let ↵i = Si \ ([j<iSj) denote the elements freshly cov-

ered by Si and �i = U \ ([j<iSj) be the elements not cov-
ered by S

1

, . . . , Si�1

. Thus, |�i| = |U| � P
j<i |↵j |. Fol-

lowing Feige et al. [FLT04], the cost of our solution is
cost(Alg) =

P
i>0

i · |↵i| = P
i>0

|�i|, which can be rewritten

as
P

i>0

P
e2↵i

|�i|
|↵i| =

P
e2U p(e), where the price p(e) = |�i|

|↵i|
for i such that e 2 ↵i. We will depict and argue about these
costs pictorially as follows. First, the “histogram” diagram
(below) is made up of |U| horizontal columns, ordered from
left to right in the order the optimal solution covers them.

The height of column e 2 U is its ⌧(e) in the optimal solu-
tion. Additionally, the “price” diagram is also made up of |U|
columns, though ordered from left to right in the order our
solution covers them; the height of column e is p(e).

�(e)

U

histogram

U

p(e) price

We can easily check that (1) the histogram curve has area
opt = cost(O⇤) and (2) the price curve has area cost(Alg).
We will show that shrinking the price diagram by 2 horizon-
tally and ✓ vertically (✓ to be chosen later) allows it to lie
completely inside the histogram when they are aligned on
the bottom-right corner. Let p = (x, y) be a point inside (or
on) the price diagram. Suppose p lies in the column e 2 ↵i,
so y p(e) = |�i|/|↵i|—and p is at most |�i| from the right.
When shrunk, p will have height h = p(e)/✓ and width—

the distance from the right end—r = 1

2

|�i|. We estimate how
many elements inside �i are covered by the optimal solution
using its first h sets. Of all the sets in F , there exists a set
S such that |S \ �i| � |O⇤

j \ �i| for all j < i.
Arguing similarly to previous proofs in this section, we

have that |↵i| � (1 � 5")|S|, so at this time, the optimal
algorithm could have covered at most h · 1

1�5" |↵i|. Setting
✓ = 2

1�5" gives that the first h sets of O⇤ will leave |�i| �
1

2

|�i| � 1

2

|�i| = r elements of �i remaining. Therefore, the
scaled version of p lies inside the histogram, proving that the
algorithm is a 2✓-approximation. By setting " = 1

40

"0, we
have 2✓ = 4

1�5" 4 + "0, which completes the proof.

5.4 Application: Asymmetric k-Center
Building on the set cover algorithm we just developed, we

present an algorithm for asymmetric k-center. The input is
an integer k > 0 and a distance function d : V ⇥ V ! R

+

,
where V is a set of n vertices; the goal is to find a set F ✓ V of
k centers that minimizes the objective maxj2V mini2F d(i, j),
where d(x, y), which needs not be symmetric, denotes the
distance from x to y. The distance d, however, is assumed to
satisfy the triangle inequality, i.e., d(x, y) d(x, z) + d(z, y).
For symmetric d, there is a 2-approximation for both the
sequential [HS85, Gon85] and parallel settings [BT10]. This
result is optimal assuming P 6= NP. However, when d is not
symmetric—hence the name asymmetric k-center, there is
a O(log⇤ n)-approximation in the sequential setting, which
is also optimal unless NP ✓ DTIME(nO(log logn)) [CGH+05],
but nothing was previously known for the parallel setting.

In this section, we develop a parallel factor-O(log⇤ n) algo-
rithm for this problem, based on the (sequential) algorithm
of Panigrahy and Vishwanathan [PV98]. Thier algorithm
consists of two phases: recursive cover and find-and-halve.

Recursive Cover for Asymmetric k-Center. The recur-
sive cover algorithm of Panigrahy and Vishwanathan [PV98]
(shown below) is easy to parallelize given the set cover routine
from Corollary 5.4. Here, V is the input set of vertices.

Set A
0

= A and i = 0. While |Ai| > 2k, repeat the following:
1. Construct a set cover instance (U ,F), where U = Ai and

F = {S
1

, . . . , S|V |} such that Sx = {y 2 Ai : d(x, y) r}.

2. B = SetCover(U ,F).

3. Ai+1

= B \A and i = i+ 1.

Let n = |A|. Assuming d is given as a distance matrix,
Step 1 takes O(n2) work and O(logn) depth (to generate
the packed representation). In O(n2) work and O(log3 n)
depth, Steps 2 and 3 can be implemented using the set-cover
algorithm (Section 5.2) and standard techniques. Following
[PV98]’s analysis, we know the number of iterations is at
most O(log⇤ n). Therefore, this recursive cover requires
O(n2 log⇤ n) work and O(log⇤ n log3 n) depth.
Next, the find-and-halve phase will be run sequentially

beyond trivial parallization. We have the following theorem:

Theorem 5.6 Let " > 0. There is a O(n2 ·(k+log⇤ n))-work
O(k · log n+ log3 n log3 n)-depth factor-O(log⇤ n) approxima-
tion algorithm for the asymmetric k-center problem

Note that the algorithm performs essentially the same
work as the sequential one. Furthermore, for k logO(1) n,
this is an RNC algorithm. As suggested in [PV98], the recur-
sive cover procedure alone yields a bicriteria approximation,
in which the solution consists of 2k centers and costs at
most O(log⇤ n) more than the optimal cost. This bicriteria
approximation has O(logO(1) n) depth for any k.

6. GREEDY FACILITY LOCATION
Metric facility location is a fundamental problem in approx-

imation algorithms. The input consists of a set of facilities F
and a set of clients C, where each facility i 2 F has cost fi,
and each client j 2 C incurs d(j, i) to use facility i—and the
goal is to find a set of facilities FS ✓ F that minimizes the
objective function �F(FS) =

P
i2FS

fi +
P

j2C d(j, FS). The
distance d is assumed to be symmetric and satisfy the triangle
inequality. This problem has an exceptionally simple factor-
1.861 greedy algorithm due to Jain et al. [JMM+03], which
has been parallelized by Blelloch and Tangwongsan [BT10],
yielding an RNC (6+")-approximation with work O(p log2 p),
where p = |F |⇥ |C|.

Using ideas from previous sections, we develop an RNC

algorithm with an improved approximation guarantee, which
essentially matches that of the sequential version.

Theorem 6.1 Let " > 0 be a small constant. There is a
O(p log p)-work O(log4 p)-depth factor-(1.861 + ") approxi-
mation algorithm for the (metric) facility location problem.

We need the following definition for the algorithm:

Definition 6.2 (Star, Price, and Maximal Star) A star
S = (i, C0) consists of a facility i and a subset of clients
C0 ✓ C. The price of S is ⇡(S) = (fi+

P
j2C0 d(j, i))/|C0|. A

star S is said to be maximal if all strict super sets of C0 have
a larger price, i.e., for all C00) C0, ⇡((i, C00)) > ⇡((i, C0)).
Let best(i) be the price of the lowest-priced maximal star
centered at i (on the current/remaining instance).

Presented in Algorithm 6.1 is a parallel greedy approxi-
mation algorithm for metric facility location. The algorithm
closely mimics the behaviors of Jain et al.’s algorithm, except
the parallel algorithm is more aggressive in choosing the stars
to open. Consider the natural integer-program formulation
of facility location for which the relaxation yields the pair of

Minimize
P

i2F,j2C d(j, i)xij +
P

i2F fiyi

Subj. to:

8

<

:

P

i2F xij � 1 for j 2 C
yi � xij � 0 for i 2 F, j 2 C
xij � 0, yi � 0

Maximize
P

j2C ↵j

Subj. to:

8

<

:

P

j2C �ij fi for i 2 F
↵j � �ij d(j, i) for i 2 F, j 2 C
�ij � 0, ↵j � 0

Figure 2: The primal (left) and dual (right) programs for metric (uncapacitated) facility location.

Algorithm 6.1 Parallel greedy algorithm for metric facility
location.
Set FA = ;. For t = 1, 2, . . . , until C = ;,
i. Let ⌧ (t) = (1 + ") ·min{best(i) : i 2 F} and F (t) = {i 2 F :

best(i) ⌧ (t)}.

ii. Build a bipartite graph G from F (t) and N(·), where for each
i 2 F (t), N(i) = {j 2 C : d(j, i) ⌧ (t)}.

iii. While (F (t) 6= ;), repeat:
1. Compute �J(t) = MaNIS

(",3")(G) and J(t) = J(t) [�J(t)

2. Remove �J(t) and N(�J(t)) from G, remove the clients
N(�J(t)) from C, and set fi = 0 for all i 2 �J(t).

3. Delete any i 2 F (t) such that ⇡((i, N(i))) > ⌧ (t).

primal (left) and dual (right) programs shown in Figure 2.
We wish to give a dual-fitting analysis similar to that of Jain
et al.
Their proof shows that the solution’s cost is equal to the

sum of ↵j ’s over the clients, where ↵j is the price of the star
with which client j is connected up. Following this analysis,
we set ↵j to ⌧ (t)/(1 + ") where t is the iteration that the
client was removed. Note that stars chosen in F (t) may have
overlapping clients. For this reason, we cannot a↵ord to open
them all, or we would not be able to bound the solution’s
cost by the sum of ↵j ’s. This situation, however, is rectified
by the use of MaNIS, allowing us to prove Lemma 6.5, which
relates the cost of the solution to ↵j ’s. Before we prove this
lemma, two easy-to-check facts are in order:

Fact 6.3 In the graph G constructed in Step 2, for all i 2
F (t), ⇡((i, N(i))) ⌧ (t).

Fact 6.4 At any point during iteration t, best(i) ⌧ (t) if

and only if ⇡((i, N(i))) ⌧ (t).

Lemma 6.5 The cost of the algorithm’s solution �F(FA) is
upper-bounded by 1

1�5"

P
j2C ↵j .

Proof. Let t > 0 and consider what happens inside the
inner loop (Steps iii.1—iii.3). Each iteration of the inner
loop runs MaNIS on F (t) with each i 2 F (t) satisfying
⌧ (t) � ⇡((i, N(i))) = (fi +

P
j2N(i) d(j, i))/|N(i)|, so

|N(i)| � 1

⌧(t)

⇣
fi +

P
j2N(i) d(j, i)

⌘
.

Because of Fact 6.3 and Step iii.3, the relationship ⌧ (t) �
⇡((i,N(i))) is maintained throughout iteration t. Running
a (", 3")-MaNIS on F (t) ensures that each �J(t) satisfies

|N(�J(t))| � (1� 4")
P

i2�J(t) |N(i)|. Thus,
X

j2�J(t)

↵j =
⌧ (t)

1 + "
|N(�J(t))| � ⌧ (t)

1 + "
(1� 4")

X

i2�J(t)

|N(i)|

� (1� 5")
X

i2�J(t)

⇣
fi +

X

j2N(i)

d(j, i)
⌘
,

which is at least

(1� 5")
⇣ X

i2�J(t)

fi +
X

j2N(�J(t)
)

d(j,�J(t))
⌘
.

Since every client has to appear in at least one J(t), summing
across the inner loop’s iterations and t gives the lemma.

In the series of claims that follows, we show that when
scaled down by a factor of � = 1.861, the ↵ setting determined
above is a dual feasible solution. We will assume without
loss of generality that ↵

1

 ↵
2

 · · · ↵|C|. Let Wi = {j 2
C : ↵j � � · d(j, i)} for all i 2 F and W = [iWi.

Claim 6.6 For any facility i 2 F and client j
0

2 C,
P

j2W:j�j0
max(0,↵j0 � d(j, i)) fi.

Proof. Suppose for a contradiction that there exist client
j and facility i such that the inequality in the claim does not
hold. Let t be the iteration such that ↵j0 = ⌧ (t)/(1 + "). Let
bC(t) be the set of clients j’s such that ↵j0 � d(j, i) > 0 that
remain at the beginning of iteration t. Thus, by our assump-
tion and the fact that {j 2 W : j � j

0

^↵j0 > d(j, i)} ✓ bC(t),
we establish

P
j2 bC(t) ↵j0 � d(j, i) =

P
j2 bC(t) max(0,↵j0 �

d(j, i)) � P
j2W:j�j0

max(0,↵j0 � d(j, i)) > fi. It follows

that ↵j0 > 1

| bC(t)| (fi +
P

j2 bC(t) d(j, i)). Hence, ⌧ (t)/(1 + ") =

↵j0 > 1

| bC(t)| (fi +
P

j2 bC(t) d(j, i)) � best(i) � ⌧ (t)/(1 + ")

since ⌧ (t)/(1 + ") is the minimum of the best price in that
iteration. This gives a contradiction, proving the claim.

Claim 6.7 Let i 2 F , and j, j0 2 W be clients. Then,
↵j ↵j0 + d(i, j0) + d(i, j).

Proof. If ↵j ↵j0 , the proof is trivial, so assume ↵j >
↵j0 . Let i0 be any facility that removed j0 (i.e, i0 2 �J(t)

such that j 2 N(i0)). It su�ces to show that ↵j d(i0, j) and
the claim follows from triangle inequality. Since ↵j > ↵j0 , in
the iteration t where ↵j = ⌧ (t)/(1 + "), we know that fi0 has
already been set to 0, so best(i0) d(j, i0). Furthermore, in
this iteration, ↵j best(i0) as ↵j = min{best(i)}, proving
the claim.

These two claims are su�cient to set up a factor-revealing
LP identical to Jain et al.’s. Therefore, the following lemma
follows from Jain et al. [JMM+03] (Lemmas 3.4 and 3.6):

Lemma 6.8 The setting ↵0
j =

↵j

� and �0
ij = max(0,↵0

j �
d(j, i)) is a dual feasible solution, where � = 1.861.

Combining this lemma with Lemma 6.5 and weak duality,
we have the promised approximation guarantee.

Running time analysis: Fix " > 0. We argue that the
number of rounds is upper bounded by O(log p). For this,
we need a preprocessing step which ensures that the ratio
between the largest ⌧ and the smallest ⌧ ever encountered
in the algorithm is O(pO(1)). This can be done in O(p)
work and O(log(|F | + |C|)) depth, adding " · opt to the
solution’s cost [BT10]. Armed with that, it su�ces to show
the following claim.

Claim 6.9 ⌧ (t+1) � (1 + ") · ⌧ (t).

Proof. Let best(t)(i) denote best(i) at the beginning of
iteration t. Let i⇤ be the facility whose best(t+1)(i⇤) attains
⌧ (t+1)/(1 + "). To prove the claim, it su�ces to show that
best(t+1)(i⇤) � ⌧ (t), as this will imply ⌧ (t+1) � (1 + ") · ⌧ (t).
Now consider two possibilities.
— Case 1. i⇤ was part of F (t), so then either i⇤ was opened in
this iteration or i⇤ was removed from F (t) in Step 3.iii. If i⇤

was opened, all clients at distance at most ⌧ (t) from it would
be connected up, so best(t+1)(i⇤) � ⌧ (t). Otherwise, i⇤ was
removed in Step iii.3, in which case best(t+1)(i⇤) � ⌧ (t) by
the removal criteria and Fact 6.4.
— Case 2. Otherwise, i⇤ was not part of F (t). This means
that best(t)(i⇤) > ⌧ (t). As the set of unconnected clients can
only become smaller, the price of the best star centered at i⇤

can only go up. So best(t+1)(i⇤) will be at least ⌧ (t), which
in turn implies the claim.

Thus, the total number of iterations (outer loop) in the
algorithm is O(log p). We now consider the work and depth of
each iteration. Step 1 involves computing best(i) for all i 2 F .
This can be done in O(p) work and O(log p) depth using
a prefix computation and standard techniques (see [BT10]
for details). Step 2 can be done in the same work-depth
bounds. Inside the inner loop, each MaNIS call requires
O(p0) work and O(log2 p0) depth, where m0 is the number
of edges in G. Steps iii.2–3 do not require more than O(p0)
work and O(log p0) depth. Furthermore, note that if i 2 F (t)

is not chosen by MaNIS, it loses at least an " fraction of its
neighbors. Therefore, the total work of in the inner loop (for
each t) is O("�1p), and depth O(log3 p). Combining these
gives the theorem.

7. CONCLUSION
We formulated and studied MaNIS—a graph abstraction

of a problem at the crux of many (set) covering-type problem.
We gave a linear-work RNC solution to this problem and
applied it to derive parallel approximation algorithms for
several problems, yielding RNC algorithms for set cover,
(prefix-optimal) max cover, min-sum set cover, asymmetric
k-center, and metric facility location.

Acknowledgments. This work is partially supported by
the National Science Foundation under grant number CCF-
1018188 and by generous gifts from IBM, Intel, and Microsoft.
We thank Anupam Gupta for valuable suggestions and con-
versations.

References
[BM98] Guy E. Blelloch and Bruce M. Maggs. Handbook

of Algorithms and Theory of Computation, chapter

Parallel Algorithms. CRC Press, Boca Raton, FL,
1998.

[BNBH+98] Amotz Bar-Noy, Mihir Bellare, Magnús M. Halldórs-
son, Hadas Shachnai, and Tami Tamir. On chromatic
sums and distributed resource allocation. Inform.
and Comput., 140(2):183–202, 1998.

[BRS94] Bonnie Berger, John Rompel, and Peter W. Shor.
E�cient NC algorithms for set cover with applica-
tions to learning and geometry. J. Comput. Syst.
Sci., 49(3):454–477, 1994.

[BT10] Guy E. Blelloch and Kanat Tangwongsan. Parallel
approximation algorithms for facility-location prob-
lems. In SPAA, pages 315–324, 2010.

[CGH+05] Julia Chuzhoy, Sudipto Guha, Eran Halperin, San-
jeev Khanna, Guy Kortsarz, Robert Krauthgamer,
and Joseph Naor. Asymmetric k-center is log⇤ n-hard
to approximate. J. ACM, 52(4):538–551, 2005.

[Chv79] V. Chvatal. A greedy heuristic for the set-covering
problem. Mathematics of Operations Research,
4(3):pp. 233–235, 1979.

[CKT10] Flavio Chierichetti, Ravi Kumar, and Andrew
Tomkins. Max-cover in map-reduce. In WWW, pages
231–240, 2010.

[Fei98] U. Feige. A threshold of lnn for approximating set
cover. J. ACM, 45(4):634–652, 1998.

[FLT04] Uriel Feige, László Lovász, and Prasad Tetali. Ap-
proximating min sum set cover. Algorithmica,
40(4):219–234, 2004.

[Gon85] Teofilo F. Gonzalez. Clustering to minimize the
maximum intercluster distance. Theoret. Comput.
Sci., 38(2-3):293–306, 1985.

[HS85] Dorit S. Hochbaum and David B. Shmoys. A best
possible heuristic for the k-center problem. Mathe-
matics of Operations Research, 10(2):180–184, 1985.

[JMM+03] Kamal Jain, Mohammad Mahdian, Evangelos
Markakis, Amin Saberi, and Vijay V. Vazirani.
Greedy facility location algorithms analyzed using
dual fitting with factor-revealing LP. Journal of the
ACM, 50(6):795–824, 2003.

[Joh74] David S. Johnson. Approximation algorithms for
combinatorial problems. J. Comput. System Sci.,
9:256–278, 1974.

[Kar72] R. M. Karp. Reducibility Among Combinatorial
Problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85–
103. Plenum Press, 1972.

[KVY94] Samir Khuller, Uzi Vishkin, and Neal E. Young. A
primal-dual parallel approximation technique applied
to weighted set and vertex covers. J. Algorithms,
17(2):280–289, 1994.

[KW85] Richard M. Karp and Avi Wigderson. A fast parallel
algorithm for the maximal independent set problem.
Journal of the ACM, 32(4):762–773, 1985.

[Lub86] Michael Luby. A simple parallel algorithm for the
maximal independent set problem. SIAM J. Comput.,
15(4):1036–1053, 1986.

[PV98] Rina Panigrahy and Sundar Vishwanathan. An
O(log⇤ n) approximation algorithm for the asymmet-
ric p-center problem. J. Algorithms, 27(2):259–268,
1998.

[RR89] Sanguthevar Rajasekaran and John H. Reif. Optimal
and sublogarithmic time randomized parallel sorting
algorithms. SIAM J. Comput., 18(3):594–607, 1989.

[RV98] Sridhar Rajagopalan and Vijay V. Vazirani. Primal-
dual RNC approximation algorithms for set cover
and covering integer programs. SIAM J. Comput.,
28(2):525–540, 1998.

[Vaz01] Vijay V. Vazirani. Approximation algorithms.
Springer-Verlag, Berlin, 2001.

[You95] Neal E. Young. Randomized rounding without solv-
ing the linear program. In SODA, pages 170–178,
1995.

	Introduction
	Preliminaries and Notation
	MaNIS
	Linear-Work Ranked MaNIS

	Linear-Work Set Cover
	Set Covering Variants
	Max Cover
	Special Case: Unweighted Set Cover
	Min-Sum Set Cover
	Application: Asymmetric k-Center

	Greedy Facility Location
	Conclusion

