
A Random NC Algorithm for Depth First Search

Alok Aggarwal *
IBM T. J. Watson Center, P. 0. Box 218
Yorktown Heights, New York 10598, USA

Richard J. Anderson
Department of Computer Science, FR-35

University of Washington, Seattle, WA 98195, USA

Abstract

In this paper we present a fast parallel algorithm
for constructing a depth first search tree for an
undirected graph. The algorithm is an Rn/C al-
gorithm, meaning that it is a probabilistic al-
gorithm that runs in polylog time using a poly-
nomial number of processors on a P-RAM. The
run time of the algorithm is O(Z’~~(n)log~n),
and the number of processors used is PM&~)
where TMM(~) and PMM(~) are the time and
number of processors needed to find a minimum
weight perfect matching on an 12 vertex graph
with maximum edge weight n.

1 Introduction

In this paper we present a fast parallel algorithm
for constructing a depth first search tree of an
undirected graph. This is the first 7w/C algor-
ithm for the problem. The problem of perform-

‘This work was was done while the authors were visit-
ing the Mathematical Sciences Research Institute, Berke-
ley, California. Aggarwal was supported in part by NSF
grant 8120790 and Anderson was supported by Air Force
Grant AFOSR-85-0203A.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or speck
permission.

0 1987 ACM O-89791-221-7/87/0006-0325 75G

ing depth first search in parallel has been con-
sidered by a number of authors [RC78], [EA77],
[Rei85], [And871 and has been conjectured to
be inherently sequential. The question as to
whether depth first search could be performed
by a fast parallel algorithm was raised by Wyllie
[WY1791 in his ground breaking thesis.

Depth first search is a very important tech-
nique for sequential computation. It has been
used in the construction of a large number of
efficient sequential algorithms [Tar72]. How-
ever, depth first search seems to be sequential
in nature. It is known that computing the lex-
icographicaJly first depth first search tree is P-
complete [Rei85]. This is the depth first search
tree found by the “natural” greedy algorithm.
However, there are a number of problems, such
as maximal independent set [KW85], [Coo85],
where computing the lexicographically minimal
solution is P-complete, while a solution can be
found in h/C or RNC. The main question that
we investigate in this paper is whether the pro-
cess of depth first search is inherently sequential
or is it possible to perform a depth first search
with a fast parallel algorithm.

The only cases where n/C algorithms are
known for depth first search are for restricted
classes of graphs. For example, depth first search
can be done in planar graphs [Smi86] and di-
rected acyclic graphs [Ram85], [GB84] with NC
algorithms. A problem that is related to depth

325

first search that has investigated previously by
the second author is t.he probl.em of finding a
branch of a depth first search tree. This prob-
lem is known as the maximal path problem.. The
maximal path problem can be solved by a rather
complicated RNC algorithm [And87]. This is
another example of a problem where computing
the lexicographically first solution is P-Complete
[AM84], but a different approach gives a fast par-
allel algorithm.

The algorithm presented in th.is paper is a sub-
stantial improvement over previously known par-
allel algorithms for depth first search. The best
previously published result was an O(n1j2) algor-
ithm [And87]. That result had bleen improved to

W ‘*) [And861 p rior to this result. Similar
techniques are used in all three of these algo-
rithms. In particular, an important step in the
algorithms is to construct sets of disjoint paths.
The paths are constructed by using network flow
techniques which in turn use matching. T:he re-
sult that made these algorithms possible was the
RNC algorithm for matching ,[KUW86]. The
only use of randomness in the algorithms has
been the reliance on probabilistic subroutines for
matching. If matching could be solved in NC,
then depth first search could also be solved in
NC.

The depth first search problem is: given a
graph G = (V, E) and a vertex T, construct a
tree T that corresponds to a depth first search
of the graph starting from the vertex T. There
are a number of different ways to characterize a
depth first search tree. One of them is: 2’ is a
depth first search tree if and only if for all non-
tree edges (u, VJ), u and v lie on the same branch
of the tree.

In this paper, we only address the problem
of depth first search for undirected graphs. It
is unclear whether or not our lmethods can be
generalized to directed graphs.

2 Notational Conventions

In our algorithm we work extensively with paths
and vertices. We often use a set of vertices to de-
note an induced subgraph wherein the edges are
inherited from the graph G = (V, E). .A path is
an ordered set of distinct vertices p = pr, . . . , pk
with edges (pi,pi+r) E E for 1 < 2: < k. Pa.ths
are sometimes viewed as being directed. A lower
segment of p is a subpath pl, . . . , pj and au upper
segment is a subpath pj,. . . ,pk. The algorithm
maintains several sets of vertex disjoi:nt paths.
For a set of paths Q = {ql,. . . ,qm}, we use IQ]
to denote the number of paths. We occasionally
mix notation and refer to sets of vertices and
paths in the same expression. In particular, if p
is a path and Q is a set of paths, V - p denotes
the induced subgraph after all vertices on p have
been removed, and V - Q denotes the induced
subgraph after all vertices contained in paths in
Q have been removed.

3 Overview of the Algorithm

Our depth first search algorithm is a divide and
conquer algorithm. A portion of a depth first
search tree is constructed which allows the prob-
lem to be reduced to finding depth first search
trees in graphs of less than half the original size.
The depth of recursion is log n.

An Initial Segment is a rooted subtree T’ t.hat
can be extend.ed to some depth first search tree
T. We give an algorithm which constructs a.n ini-
tial segment T’ with the property that the largest
connected component of V - T’ has size at most
f. The initial segment has root r.

An initial segment T’ can be extended to a
depth first search tree in the following manner.
Let C be a connected component of V - T’.
There is a unique vertex z E T’ of greatest depth
that is adjacent to some vertex of C. Let y E C
be adjacent to 2. Construct a depth first search
tree for C rooted at y and then connect it to T’
by an edge from x to y. This construction can
be performed independently for each connected

326

component of V - T’.
Since the problem size is reduced by at least

half at each stage, the depth of recursion is at
most logn. The time for a stage is dominated
by the time to construct an initial segment. The
run time for the full algorithm is thus log n times
the time to construct an initial segment.

The algorithm that constructs an initial seg-
ment consists of two parts. A set Q of vertex dis-
joint paths is said to be a sepamtor if the largest
connected component of V - Q has size at most
3. This follows the standard graph theoretic use
of the term [LT79]. The first part of the algor-
ithm is to construct a separator Q, where the
number of paths in Q is bounded by a fixed con-
stant. The second part is to construct an initial
segment from the separator Q. The first part,
constructing a small separator is the most sig-
nificant part. The second part arises primarily
from technical considerations, and is an adap-
tation of a routine from the earlier depth first
search algorithm [And87]. The next three sec-
tions cover the construction of the small separa-
tor and then the following section describes how
the initial segment is built from the separator.

4 Constructing a Separator

The central part of the algorithm is to construct
a set of vertex disjoint paths Q = (~1,. . , ,qk},
where k is less than a fixed constant and the
largest component of V - Q has size at most 1.
The algorithm to construct the separator relies
on a routine Reduce(Q) which reduces the num-
ber of paths in Q while retaining the separator
property. Each call to Reduce reduces the num-
ber of paths by a factor of A.

Initially, Q consists of all the vertices of V,
each as a path of length 0. The separator prop-
erty holds trivially at the beginning since every-
thing is in Q. Since there is a constant fraction
reduction in the number of paths in Q by each
call to Reduce, O(log rz) calls suffice to reduce the
size of Q to at most 11. At that point the sec-
ond part of the algorithm, that of constructing

the initial segment, is performed. It would have
been desirable to reduce the separator to just a
single path, and then use it as a branch of the
depth first search tree, but that has difficulties
for a couple of reasons. First, the routine Reduce
only guarantees a reduction if it is sufficiently
big. Second, in order to use a single path in the
depth first search tree, it would be necessary to
have the vertex r as one of the endpoints of the
path. It is possibie to change the endpoint of a
single path that is a separator, but the method is
essentially the same as the routine to construct
the initial segment.

5 Reducing the number of
paths

We now describe the main routine Reduce. The
basic idea is to join the paths of Q by finding
vertex disjoint paths between them. This allows
paths of Q to be combined in pairs so that their
number is reduced. The disjoint paths are found
by using a parallel subroutine for matching. Our
routine Reduce satisfies the following specifica-
tion:

Reduce(Q)
input

A set Q of vertex disjoint paths such that the
largest connected component of V - Q has
size at most 5. IQ/ > 12.

output

A set Q’ of vertex disjoint paths such that the
largest connected component of V - Q’ has
size at most 4. IQ’\ < g l&I.

The general situation in Reduce is to have a
set of vertex disjoint paths Q that is a separa-
tor for the graph. Q is divided into two sets of
paths, L and S. A set of vertex disjoint paths
P = {PI,. . . ,pcy} if found between the paths of

L and the paths of S. Each path pi has one of
its endpoints a vertex of some path in L and its
other endpoint a vertex of some path in S, and
interior vertices from V - Q. Each path of Q
contains the endpoint of at most one path of P.

327

s II

Y

S’

l

S

l

Figure 1: Joining a pair of paths

Figure 2: Finding paths between L and S

Suppose the path p joins paths 1 E L and s E S,
p has endpoints CC and y, 1 = Z’xZ” and s = s’ys”. by a set of paths P, ‘? and S denote the paths of
Then the paths 1 and s can be joined to form L
Z’ps’, The question is what to do with the un-

and S that. are joined. The upper segments of

used segments 1” and s”. If I” and s” are kept as
the paths i that are discarded are denoted L’.
N ote

paths, then there are three paths instead of the
that this operation of joining paths does

original two. On the other hand, if k” and s” are
not increase the number of paths. The number

discarded and no longer considered part of Q,
of paths in L remains the same. The number of

then components of V - Q could merge and the
paths in S can decrease. If a path of S is joined
at an endpoint, the entire path is added to a path

separator property could be lost. The key idea of L
in the routine Reduce is how to deal with the un-
used segments in a manner that maintains the

Initially, suppose IQ1 = K. The paths of Q are

separator property without increasing the num-
divided so that $A’ paths are placed in L and the

ber of paths.
remaining paths are placed in S. A maximum
cardinality set of disjoint paths P = (~1,. . . ,pa}

The paths of Q are divided into the two sets, is found between L and S and then the paths
L and S. L is thought of as the long paths are joined as described above. This step is re-
and S is thought of as the short paths. The peated until the number of paths in Q is at most
idea is to find the disjoint paths and extend the ZK. There are, however, two things that could
paths of L using the paths of S. The short paths go wrong:
have their lengths decreased by this process. Let
P = {PI,... ,pcy} be a set of vertex disjoint paths 1. Discarding the paths L* could cause com-

joining paths of L to paths of S. Suppose the ponents of V - Q to merge. This could

path p joins the path 1 E L and s E S. Let cause the separator property to be lost.

1 = 1’21” and s = s’ys” where x and y are the
endpoints of p. Ifs’ is at least as long as s”, then

2. The number of paths joined might be small

1 is replaced by I’ps’, s is replaced by s” and I” is
so little progress is made by this step. This
case is said to occur when the number of

discarded. 0 therwise, ifs” is longer, I is replaced
by l’ps”, s is replaced by s’ and 1” is discarded.

paths joined is less than AK.

In either case the path s is reduced in length by Suppose for the time being that neither case 1
half. This is done for each path p E P and the nor case 2 occurs. Then in a step, the lengths of
pair of paths p joins. When L and S are joined at least &1f paths of S are reduced by at least

328

half. Since there are $K paths in S initially, each
of length less than n, the maximum number of
phases before S is exhausted is 9 logn. Thus,
as long as nothing goes wrong, the number of
paths can be reduced by a constant fraction in
O(logn) phases. Phases are repeated until the
number of paths is reduced to SK. Thus, we
have the following lemma.

Lemma 1 If neither case 1 nor case 2 arises,
the number of paths in Q can be reduced to ErC
in 9 log n phases of joining paths.

To complete the description of the algorithm,
we describe what to do if either case 1 or 2 arises.

The main danger in joining paths is that dis-
carding segments of L may cause the separator
property to be violated. In order to deal with
this potential problem we add a restriction to the
set of vertex disjoint paths that is constructed.
Suppose the maximum number of vertex disjoint
paths between L and S is a, with cy 2 &rC. Let

p = {Pl , . . . ,p&} be a maximum set of disjoint
paths from I, to S. For the path p; from I to s we
assign a cost equal to the length of the segment
cut off. That is if E = llxll’, with x an endpoint
of pi we assign it a cost of /1”1. The set of ver-
tex disjoint paths that we find is the one that
minimizes the total cost. In the next section we
show that the problem of finding a mincost set
of paths can be reduced to a matching problem
and consequently solved by an 7WC algorithm,

Now we show how to deal with the case
where discarding the paths causes a large con-
nected component to form. Suppose that P =
{PI, . . , ,po,} is a mincost maximum set of vertex
disjoint paths. Let T be the set of vertices not
on any path, so 2’ = V - Q - P. The key is
the following lemma which says that if the up-
per segments of the paths cannot be discarded
without creating a large connected component,
then a different set of paths can be discarded.

Lemma 2 If the Zargest connected component of
T u L” has size at least f, then the largest con-
nected component of T u (S - 3) has size less
than $.

Proof: The largest component of 2’ has size at
most ; since Q is assumed to be a separator for
the graph. There cannot be a path from a vertex
in L* to a vertex in S - S using vertices of T.
If there was such a path then a set of paths the
same size as P could have been found between L
and S with strictly less cost. The induced sub-
graph on TuL*u(S-3) must contain at least two
connected components. Either the components
containing vertices of L* or the components con-
taining vertices of S - S must have total size at 1
most i since L* and S - S fall into different com-
ponents. Since the largest connected component
of T U L* is assumed to have size at least F, it
follows that the size of the components contain-
ing S - 3 in TU L” U (S - ,!?) is at most g. Hence,
the largest connected component of T u (S - 3)

has size at most $. I

Thus, if case 1 occurs, the paths of S - 3 can
be added to T instead of L’. Discarding the
paths S - 3 is sufficient to achieve a constant
fraction reduction in the number of paths and
preserves the separator property. The remaining
paths are L, S and P. The number of paths in
each of these sets is at most $K, so the number
of paths remaining is $A’. Thus, when this case
occurs, we just discard the path S - S and Reduce
is done.

The other bad case is if there are few paths
between L and S. Suppose P = (~1,. , . ,p,.} is
a maximum set of disjoint paths and (Y < AK.
Since P is maximum there could not be a path
from L - i to S - S using vertices of 7’. Thus
L - i and S - 3 fall into separate connected
components in the graph on TU (L - 2) u (S- 3).

By similar reasoning to above, either the graph
on T U (L - 1) or on T.U (S - S) has connected
components of size at most 9, so either L - L
or S - 3 may be discarded without losing the
separator property. Suppose the paths of L - ..k
are discarded. Then the remaining paths are i,
p,, and S. J$ and P each have at most &K paths
and S has at most :K paths so the number of
paths is reduced to , q UK paths. If the paths S-S

329

are discarded, then the remaining paths are L,
P, and ,!? which have total size at most &K.
In either case, a constant fraction reduction is
achieved, so that the second bad case can also
be dealt with.

6 Finding Sets of Disjoint
Paths

We now show how the problem of constructing
a maximum set of vertex disjoint paths can be
reduced to a matching problem. The match-
ing problem is to construct a perfect matching
of minimum weight. The edges have integer
weights of at most n. The reduction can be done
in O(Iogn) time using n2 processors.

The maximum set of disjoint paths problem
can be stated as follows: Given a graph G’ =
(V’,E’) and disjoint sets of vertices X and Y
find a maximum cardinality s,et of vertex dis-
joint paths that have one endpoint in X and the
other in Y. The weighted vers6on of the problem
is where weights are attached to the edges and
a maximum set of disjoint patlhs with minimum
total weight is sought. It is easy to see that this
is the problem we need to solve to find the dis-
joint paths for our algorithm. Each path in L
is contracted to a vertex that is put in X, and
each path in S is contracted tlo a vertex that is
put in Y. The edges leaving vertices of X are
assigned weights that correspond to the edges
leaving paths of L. Now, the problem of finding
a maximum set of disjoint paths from X to Y can
be expressed as a flow problem with unit capaci-
ties [ET751 and then reduced to bipartite match-
ing. The weighted version of the disjoint paths
problem can be solved by a mincost flow prob-
lem which can be reduced to weighted matching.
However, this approach uses many processors.
The reason that this approach uses so many pro-
cessors is that the reduction from network flow
to matching substantially increases the size fo
the graph. We solve the problem by giving a di-
rect reduction to minimum weight matching. We

first give a reduction of the unweighted disjoint
paths problem to the matching p:roblem where
the edges have weight of only zero and one. This
allows us to dietermine the maximum number of
paths. We then give a reduction that finds the
minimum weight set of disjoint paths. These re-
ductions only increase the number of vertices in
the graph by a constant fraction.

Lemma 3 l’he problem of finding a maximum

set of disjoint paths can be reduced to that 01
finding the minimum weight perfect matching in

some graph C?’ in which every edge has a weight
of zero or one only.

Proof: We transform the problem of finding
a maximum set of disjoint paths in a graph
G’ = (V’, E’) to the problem of finding a per-
fect matchin.g of minimum weight in a graph
G” = (V”,E”). For convenience, we assume
that 1x1 = \YI. Th is can be achieved by adding
dummy verti.ces to the smaller of the two sets.

The graph G” has vertices v;, and ~,,t for each
v E V’ - X - Y with an edge (‘uin, uU,,t) E E”.
There are also vertices zl,. , . ,z, and yl,. . . : ya
in V”. We also denote these sets as X and 1’
in V” and d.enote V” - X - Y as W. For an
edge (a, zu) C: E’ with U, w E V’ - X - Y there
are edges (v;,, w,,~), (win, ‘u,,~) E E”. For an
edge (z;, V) IE E’ there is an edge (CC;, v;~) E E”
and similarly for (yj, V) E E’ there is an edge
(~,,t, yj) E E”. For an edge (zi, yj) E E’, there
is an edge (Q, yj) E E”. All the edges mentioned
so far have weight zero. We refer to this as the
basic construction. We add a complete bipartite
graph with edges of weight one between X and Y
in G”. This may create parallel edges between
some pairs zi and yj, with one edge of weight
zero and the other edge of weight one.

We now show that a minimum weight perfect
matching in G” corresponds directly to a maxi-
mum set of disjoint paths in G’.

Suppose we have a set of k vertex disjoint
paths in G”. Let xiv;, , . . . , vu;, yj be a path.

We match the edges (zi,v;,,i,), (v~i,,~~t,~j),
and (~i~,~~t, uil+,,in) for I = 1 . . . m - 1 in G”.

330

The unmatched vertices of W can be matched
(Wj,in, q,out >. The remaining unmatched vertices
are CY - k vertices of X and CY - k vertices of Y.
These can be matched with edges of weight one.
Thus we have a matching of weight cy - k.

Now suppose we have a perfect matching M
of weight LY -k. Let M’ be the set of all edges of
the form (q;,, q,,t). Consider the graph with
vertices V” and edges M $ M’, where $ denotes
symmetric difference. The vertices of X and Y
all have degree one and the vertices of W have
degree zero or two. Thus, the graph consists of
paths and cycles. The interior vertices of a path
are alternately of the form u;,+ and ~j,,,t, so the
paths go from X to Y. There are a paths in the
graph. Since the matching had weight Q - k, k
paths have weight zero. These paths correspond
directly to paths in G’.

We have shown a perfect matching in G” corre-
sponds directly to a set of vertex disjoint paths
in G’. By minimizing the weight of a perfect
matching we maximize the number of paths,

I
We now show that the minimum cost set of

paths used in the algorithm can be constructed
by solving a weighted matching problem. Recall
that the cost function for a path that leaves the
path E E L from the vertex z is the distance that
2 is from the end of the path 2. We first con-
tract each path si E S to obtain a single vertex
yi in G’. Then, we contract each path Zi E L to
obtain a vertex 2; in G’ and assign a weight of
j to an edge incident at pi if the corresponding
edge is incident at a vertex in 1; and this vertex
is at a distance of j from the topmost vertex in
Zi. If the construction yields multiple edges be-
tween zi and o, only the one of minimum weight
is retained. All edges not adjacent to a vertex
corresponding to a path li E L have weight zero.

Lemma 4 The problem of finding a minimum
cost set of disjoint paths of a gi,ven sire can be
reduced to the problem of finding a minimum
weight perfect matching in a graph with at most
2n vertices and edges of weight at most n.

Proof: Suppose we want to find a set of k dis-
joint paths of minimum weight between X a.nd
Y. We construct a graph G” = (V”, E”) in which
a minimum weight perfect matching corresponds
directly to a minimum weight set of k disjoint
paths in G’ = (V’,E’). Suppose 1x1 = o! and
\Yl = ,O. We begin with the basic construction
used above. The edges inherit their weights for
G’, so edges leaving vertices of X may have non-
zero weight and the other edges have weight zero.
Instead of adding a complete bipartite graph be-
tween X and Y, we add two sets of vertices 2
and Y where X = Q! - k and Y = p - k. We

I I I I
add complete bipartite graphs between X and
X and between Y and ?. These edges all have
weight zero.

By an argument that is almost identical to the
one used in Lemma 1, it can be shown that there
is a direct correspondence between a set of k dis-
joint paths in G’ and a perfect ma.tching in G”.
The weight of the matching is the same as the
weight of the disjoint paths, thus we can find
the minimum weight set of paths by finding the
minimum weight perfect matching, I

Theorem 1. Let PMM(~) and Tm~(n) denote,
respectively, the number of processors and the
parallel time required to compute a minimum
weight perfect matching of an n-node graph G”
that has a weight of at most n on all its edges.
Then, the minimum cost set of vertex disjoint
paths can be found in O(Z’MM(n)) parallel time
with PM&~) processors.

Proof: The above reductions are used in two
stages. The first reduction is used to find the
maximum number of disjoint paths, and then the
second one is applied to find the minimum cost
set of disjoint paths of that size. The time and
number of processors are dominated by the cost
of solving the matching problems.

331

7 Constructing an Initial Seg-
ment

In this section we complete the description of
the algorithm that constructs an initial segment
T’ of some depth first search tree. The routine
constructs the initial segment :from a separating
set of paths Q. The initial segment, is rooted at T
and has the property that the largest connected
component, of V - T’ has size at most 5, so T’
could also be viewed as a sepazator. The set, Q
is assumed to have at most a constant number
of paths, (the bound is 11).

The routine to construct the initial segment is
essentially a sequential algorithm; its only use of
parallelism is in the low level routines that ma-
nipulate the graph. The algorithm maintains a
subtree 5?. Initially, 5!’ is just the vertex T. A
step of the algorithm is to take one of the paths
q E Q and to extend the subtree to contain at
least half to the path 4. This is done by pick-
ing the lowest vertex on 5? from which there is
a path to q. Suppose the path p is from x E p
to y E q where q = q’yq” and q’ is at least as
long as q”. The path pq’y is added to 2? and the
path q is replaced by q”. Note that the length of
the path q is reduced by at least half. Since the
number of paths initially in Q is at most 11, the
number of phases until all paths of Q are used up
is at most 11 log n. An individual phase of the
algorithm can easily be done in O(log2 n) time,
so this algorithm runs in O(10g3n) time. At the
end of the algorithm, the subtree p is an initial
segment such that the largest connected compo-
nent of V - 5! has size at most t. To show that

? can be extended to a depth first search tree it
is sufficient to prove that there are no paths be-
tween separate branches of ?’ that have all their
interior vertices in V - ‘?. This condition holds
through out the execution of the algorithm since
the extensions are made from the lowest vertex
possible. The largest connected component of
V - ? has size at most f since 5! contains all
vertices on paths in Q and Q is a separator.

8 Algorithm Summary

The preceding sections have described our par-

allel algorithLm for depth first search. We now
give a more formal version in pidgin PASCAL to
facilitate the timing analysis’.

DFS(G, r)
T’ t InitialSegment(G, r);
for each connected component C of’ G - T’ do

recursively compute a dfs tree for C;
add the tree for C to T’;

InitialSegment(G, r)
Q +-Vi
while IQ1 > 11 do

Reduce(Q);
Build the initial segment from Q;

The main routine of the algorithm is Reduce.
In the code for the routine we use the following
notation which is consistent with the notation
used above. The set Q is divided into two sets
of paths, L and S. A set of disjoint paths P
is found between L and S. The joined paths of
L and S are i and 3. The upper segments of
the paths of i above the join are denoted L”.
The vertices not on any of the paths are T, so
T = V - Q -- P. For a subset X of the vertices,
we use ICC(X) to denote the size of the largest
connected clomponent of the subgraph induced
on X.

332

Reduce(Q)

If c- I&I;
Divide & into twosets, L and S, where IL1 = $I(

and ISi = 2K;
f while IQ/ > &If do

Find mincost disjoint paths P = (~1, . . . , paI
between L and S;

if (Y < j$K then

if Icc(TlJ (S - 3)) < i then

Q+-LUhJP;
else

Q+SuhP;
return

else if Icc(T u L*) > 3 then

Qduh~P;
return

else
Extend the paths of f;. Suppose p joins 1

and s, x and y are the endpoints of p and
1 = l’tl”, $ = sly’s”. If Is’1 1 Is”) then
1 + 1’~s’ and s c s”, otherwise, 1 + 1’~s”
and s + s’. In both cases, 1” is discarded.

The algorithm has three levels of iteration or
recursion: the recursive contruction of dfs trees
for components, the calls to Reduce to reduce the
size of the separator, and the step of extending
paths. Each of these can be executed O(logn)
times, so the run time is O(log3n) times the
time of the inner loop of Reduce. The run time
for the inner loop is dominated by the cost of
finding the disjoint paths, which is solved as a
ma.tching problem. Matching can be solved in
O(log2 n) time [MVV87], so our algorithm runs
in O(log5 n) time. The only step of the algor-
ithm which is expensive in terms of processors
it finding the mincost set of disjoint paths. In
Section 6, we showed that this problem could be
reduced to the problem of finding a minimum
weight perfect matching in a graph with edge
weights of at most n. The number of vertices in
the graph that we reduce the problem to is O(n).
Thus, the matching problem can be solved with
nM(n) processors [MVV87], where n/i(n) is the
number of processors that are needed to multiply
matrices.

9 Discussion

In this paper, we presented a fast parallel algor-
ithm for computing a depth first search tree of an
n-vertex graph. We showed that the depth first
search problem is in Rn/C and if the problem of
minimum weight maximum matching is in n/C
then so is the depth first search problem. Conse-
quently, this paper disproves a widespread belief
that the computation of a depth first search tree
is an inherently sequential process.

There are two major problems related to par-
allel depth first search that this paper leaves
open. The first is whether depth first search can
be solved by a deterministic parallel algorithm
in polylog time. This could be shown by either
giving an n/C algorithm for matching or by find-
ing a different approach for parallel depth first
search that does not rely on network flow ideas
to find disjoint paths. The second open problem
is for the depth first search of a directed graph.
Our algorithm breaks down almost immediately
for the case of directed graphs. It would be in-
teresting to see if similar ideas to ours could be
applied to directed graphs.

References

[AM841 R. J. Anderson and E. Mayr.
Parallelism and Greedy Algorithms.
Technical Report STAN-CS-84-1003,
Computer Science Department, Stan-
ford University, April 1984.

[And861 R. J. Anderson. A parallel algor-
ithm for depth-first search. 1986. Ex-
tended abstract.

[And871 R. J. Anderson. A parallel algorithm
for the maximal path problem. Com-
binatorica, 7(3), 1987.

[Coo851 S. A. Cook. A taxonomy of prob-
lems with fast parallel algorithms. In-
formation and Control, 64(l-3):2-22,

Jan/Feb/Mar 1985.

333

[EA77]

ET751

GB84]

D. Eckstein and D. Alton. Paral- [Smi86]
lel graph processing using depth first
search. In I’roceedings of the Con-
ference on Theoretical Computer Sci-
ence at the University of Waterloo,
pages 21-29, 1977.

[Tar72]

S. Even and R. E. Tarjan. Net-
work flow and testing graph connec-
tivity. SIAM Journal on Computing,

WY1791

4(4):507-518, 1975.

R. K. Ghosh and G. P. Bhattachar-
jee. A parallel search algorithm for
directed acyclic graphs. BIT, 24:134-
150, 1984.

[KUWSS] R. M. Karp, E. Upfal, and A. Wigder-
son. Constructing a maximum match-
ing is in random NC. Combinatorics,
6(1):35-48, 1986.

[KW85]

[LT79]

[~~~871

[Ram851

[RC78]

[Rei85]

R. M. Karp and A. Wigderson. A fast
parallel algorithm for the maximal in-
dependent set problem. Journal of the
A CM, 32(4):762-773, 1985.

R. J. Lipton and R.. E. Tarjan. A
separator theorem for planar graphs.
SIAM Journal on Applied Math,
36(3):177-189, 1979.

K. Mulmuley, U. V. Vazirani, and
V. V. Vazirani. Mat,ching is as easy
as matrix inversion. In Prcrceedings of
the 19th ACM Symposium on Theory
of Computation, 1987.

V. Ramachandran. 1985. Personal
communication.

E. Reghbati and D. Corniel. Par-
allel computations in graph theory.
SIAM Journal on Computing, 7:230-
237, 1978.

J. H. Reif. Depth-first search is in-
herently sequential. hformation Pro-
cessing Letters, 20:229-234, 1985.

334

J. :R. Smith. Parallel algorithms
for depth first searches I: planar
graphs. SIAM Journal on Comput-
ing, 15(3):814-830, 1986.

R. IS. Tarjan. Depth-first search and
linear graph algorithms. SIA.M Jour-
nal on Computing, 1:146-160, 1972.

J. C. Wyllie. The Complexity of Yur-
aEZe1 Computation. PhD thesis, De-
partment of Computer Science, Cor-
nell University, 1979.

