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Abstract 

In this paper we present a fast parallel algorithm 
for constructing a depth first search tree for an 
undirected graph. The algorithm is an Rn/C al- 
gorithm, meaning that it is a probabilistic al- 
gorithm that runs in polylog time using a poly- 
nomial number of processors on a P-RAM. The 
run time of the algorithm is O(Z’~~(n)log~n), 
and the number of processors used is PM&~) 
where TMM(~) and PMM(~) are the time and 
number of processors needed to find a minimum 
weight perfect matching on an 12 vertex graph 
with maximum edge weight n. 

1 Introduction 

In this paper we present a fast parallel algorithm 
for constructing a depth first search tree of an 
undirected graph. This is the first 7w/C algor- 
ithm for the problem. The problem of perform- 
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ing depth first search in parallel has been con- 
sidered by a number of authors [RC78], [EA77], 
[Rei85], [And871 and has been conjectured to 
be inherently sequential. The question as to 
whether depth first search could be performed 
by a fast parallel algorithm was raised by Wyllie 
[WY1791 in his ground breaking thesis. 

Depth first search is a very important tech- 
nique for sequential computation. It has been 
used in the construction of a large number of 
efficient sequential algorithms [Tar72]. How- 
ever, depth first search seems to be sequential 
in nature. It is known that computing the lex- 
icographicaJly first depth first search tree is P- 
complete [Rei85]. This is the depth first search 
tree found by the “natural” greedy algorithm. 
However, there are a number of problems, such 
as maximal independent set [KW85], [Coo85], 
where computing the lexicographically minimal 
solution is P-complete, while a solution can be 
found in h/C or RNC. The main question that 
we investigate in this paper is whether the pro- 
cess of depth first search is inherently sequential 
or is it possible to perform a depth first search 
with a fast parallel algorithm. 

The only cases where n/C algorithms are 
known for depth first search are for restricted 
classes of graphs. For example, depth first search 
can be done in planar graphs [Smi86] and di- 
rected acyclic graphs [Ram85], [GB84] with NC 
algorithms. A problem that is related to depth 
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first search that has investigated previously by 
the second author is t.he probl.em of finding a 
branch of a depth first search tree. This prob- 
lem is known as the maximal path problem.. The 
maximal path problem can be solved by a rather 
complicated RNC algorithm [And87]. This is 
another example of a problem where computing 
the lexicographically first solution is P-Complete 
[AM84], but a different approach gives a fast par- 
allel algorithm. 

The algorithm presented in th.is paper is a sub- 
stantial improvement over previously known par- 
allel algorithms for depth first search. The best 
previously published result was an O(n1j2) algor- 
ithm [And87]. That result had bleen improved to 

W ‘*) [And861 p rior to this result. Similar 
techniques are used in all three of these algo- 
rithms. In particular, an important step in the 
algorithms is to construct sets of disjoint paths. 
The paths are constructed by using network flow 
techniques which in turn use matching. T:he re- 
sult that made these algorithms possible was the 
RNC algorithm for matching ,[KUW86]. The 
only use of randomness in the algorithms has 
been the reliance on probabilistic subroutines for 
matching. If matching could be solved in NC, 
then depth first search could also be solved in 
NC. 

The depth first search problem is: given a 
graph G = (V, E) and a vertex T, construct a 
tree T that corresponds to a depth first search 
of the graph starting from the vertex T. There 
are a number of different ways to characterize a 
depth first search tree. One of them is: 2’ is a 
depth first search tree if and only if for all non- 
tree edges (u, VJ), u and v lie on the same branch 
of the tree. 

In this paper, we only address the problem 
of depth first search for undirected graphs. It 
is unclear whether or not our lmethods can be 
generalized to directed graphs. 

2 Notational Conventions 

In our algorithm we work extensively with paths 
and vertices. We often use a set of vertices to de- 
note an induced subgraph wherein the edges are 
inherited from the graph G = (V, E). .A path is 
an ordered set of distinct vertices p = pr, . . . , pk 
with edges (pi,pi+r) E E for 1 < 2: < k. Pa.ths 
are sometimes viewed as being directed. A lower 
segment of p is a subpath pl, . . . , pj and au upper 
segment is a subpath pj,. . . ,pk. The algorithm 
maintains several sets of vertex disjoi:nt paths. 
For a set of paths Q = {ql,. . . ,qm}, we use IQ] 
to denote the number of paths. We occasionally 
mix notation and refer to sets of vertices and 
paths in the same expression. In particular, if p 
is a path and Q is a set of paths, V - p denotes 
the induced subgraph after all vertices on p have 
been removed, and V - Q denotes the induced 
subgraph after all vertices contained in paths in 
Q have been removed. 

3 Overview of the Algorithm 

Our depth first search algorithm is a divide and 
conquer algorithm. A portion of a depth first 
search tree is constructed which allows the prob- 
lem to be reduced to finding depth first search 
trees in graphs of less than half the original size. 
The depth of recursion is log n. 

An Initial Segment is a rooted subtree T’ t.hat 
can be extend.ed to some depth first search tree 
T. We give an algorithm which constructs a.n ini- 
tial segment T’ with the property that the largest 
connected component of V - T’ has size at most 
f. The initial segment has root r. 

An initial segment T’ can be extended to a 
depth first search tree in the following manner. 
Let C be a connected component of V - T’. 
There is a unique vertex z E T’ of greatest depth 
that is adjacent to some vertex of C. Let y E C 
be adjacent to 2. Construct a depth first search 
tree for C rooted at y and then connect it to T’ 
by an edge from x to y. This construction can 
be performed independently for each connected 
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component of V - T’. 
Since the problem size is reduced by at least 

half at each stage, the depth of recursion is at 
most logn. The time for a stage is dominated 
by the time to construct an initial segment. The 
run time for the full algorithm is thus log n times 
the time to construct an initial segment. 

The algorithm that constructs an initial seg- 
ment consists of two parts. A set Q of vertex dis- 
joint paths is said to be a sepamtor if the largest 
connected component of V - Q has size at most 
3. This follows the standard graph theoretic use 
of the term [LT79]. The first part of the algor- 
ithm is to construct a separator Q, where the 
number of paths in Q is bounded by a fixed con- 
stant. The second part is to construct an initial 
segment from the separator Q. The first part, 
constructing a small separator is the most sig- 
nificant part. The second part arises primarily 
from technical considerations, and is an adap- 
tation of a routine from the earlier depth first 
search algorithm [And87]. The next three sec- 
tions cover the construction of the small separa- 
tor and then the following section describes how 
the initial segment is built from the separator. 

4 Constructing a Separator 

The central part of the algorithm is to construct 
a set of vertex disjoint paths Q = (~1,. . , ,qk}, 
where k is less than a fixed constant and the 
largest component of V - Q has size at most 1. 
The algorithm to construct the separator relies 
on a routine Reduce(Q) which reduces the num- 
ber of paths in Q while retaining the separator 
property. Each call to Reduce reduces the num- 
ber of paths by a factor of A. 

Initially, Q consists of all the vertices of V, 
each as a path of length 0. The separator prop- 
erty holds trivially at the beginning since every- 
thing is in Q. Since there is a constant fraction 
reduction in the number of paths in Q by each 
call to Reduce, O(log rz) calls suffice to reduce the 
size of Q to at most 11. At that point the sec- 
ond part of the algorithm, that of constructing 

the initial segment, is performed. It would have 
been desirable to reduce the separator to just a 
single path, and then use it as a branch of the 
depth first search tree, but that has difficulties 
for a couple of reasons. First, the routine Reduce 
only guarantees a reduction if it is sufficiently 
big. Second, in order to use a single path in the 
depth first search tree, it would be necessary to 
have the vertex r as one of the endpoints of the 
path. It is possibie to change the endpoint of a 
single path that is a separator, but the method is 
essentially the same as the routine to construct 
the initial segment. 

5 Reducing the number of 
paths 

We now describe the main routine Reduce. The 
basic idea is to join the paths of Q by finding 
vertex disjoint paths between them. This allows 
paths of Q to be combined in pairs so that their 
number is reduced. The disjoint paths are found 
by using a parallel subroutine for matching. Our 
routine Reduce satisfies the following specifica- 
tion: 

Reduce(Q) 
input 

A set Q of vertex disjoint paths such that the 
largest connected component of V - Q has 
size at most 5. IQ/ > 12. 

output 

A set Q’ of vertex disjoint paths such that the 
largest connected component of V - Q’ has 
size at most 4. IQ’\ < g l&I. 

The general situation in Reduce is to have a 
set of vertex disjoint paths Q that is a separa- 
tor for the graph. Q is divided into two sets of 
paths, L and S. A set of vertex disjoint paths 
P = {PI,. . . ,pcy} if found between the paths of 

L and the paths of S. Each path pi has one of 
its endpoints a vertex of some path in L and its 
other endpoint a vertex of some path in S, and 
interior vertices from V - Q. Each path of Q 
contains the endpoint of at most one path of P. 

327 



s II 

Y 

S’ 

l 

S 

l 

Figure 1: Joining a pair of paths 

Figure 2: Finding paths between L and S 

Suppose the path p joins paths 1 E L and s E S, 
p has endpoints CC and y, 1 = Z’xZ” and s = s’ys”. by a set of paths P, ‘? and S denote the paths of 
Then the paths 1 and s can be joined to form L 
Z’ps’, The question is what to do with the un- 

and S that. are joined. The upper segments of 

used segments 1” and s”. If I” and s” are kept as 
the paths i that are discarded are denoted L’. 
N ote 

paths, then there are three paths instead of the 
that this operation of joining paths does 

original two. On the other hand, if k” and s” are 
not increase the number of paths. The number 

discarded and no longer considered part of Q, 
of paths in L remains the same. The number of 

then components of V - Q could merge and the 
paths in S can decrease. If a path of S is joined 
at an endpoint, the entire path is added to a path 

separator property could be lost. The key idea of L 
in the routine Reduce is how to deal with the un- 
used segments in a manner that maintains the 

Initially, suppose IQ1 = K. The paths of Q are 

separator property without increasing the num- 
divided so that $A’ paths are placed in L and the 

ber of paths. 
remaining paths are placed in S. A maximum 
cardinality set of disjoint paths P = (~1,. . . ,pa} 

The paths of Q are divided into the two sets, is found between L and S and then the paths 
L and S. L is thought of as the long paths are joined as described above. This step is re- 
and S is thought of as the short paths. The peated until the number of paths in Q is at most 
idea is to find the disjoint paths and extend the ZK. There are, however, two things that could 
paths of L using the paths of S. The short paths go wrong: 
have their lengths decreased by this process. Let 
P = {PI,... ,pcy} be a set of vertex disjoint paths 1. Discarding the paths L* could cause com- 

joining paths of L to paths of S. Suppose the ponents of V - Q to merge. This could 

path p joins the path 1 E L and s E S. Let cause the separator property to be lost. 

1 = 1’21” and s = s’ys” where x and y are the 
endpoints of p. Ifs’ is at least as long as s”, then 

2. The number of paths joined might be small 

1 is replaced by I’ps’, s is replaced by s” and I” is 
so little progress is made by this step. This 
case is said to occur when the number of 

discarded. 0 therwise, ifs” is longer, I is replaced 
by l’ps”, s is replaced by s’ and 1” is discarded. 

paths joined is less than AK. 

In either case the path s is reduced in length by Suppose for the time being that neither case 1 
half. This is done for each path p E P and the nor case 2 occurs. Then in a step, the lengths of 
pair of paths p joins. When L and S are joined at least &1f paths of S are reduced by at least 
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half. Since there are $K paths in S initially, each 
of length less than n, the maximum number of 
phases before S is exhausted is 9 logn. Thus, 
as long as nothing goes wrong, the number of 
paths can be reduced by a constant fraction in 
O(logn) phases. Phases are repeated until the 
number of paths is reduced to SK. Thus, we 
have the following lemma. 

Lemma 1 If neither case 1 nor case 2 arises, 
the number of paths in Q can be reduced to ErC 
in 9 log n phases of joining paths. 

To complete the description of the algorithm, 
we describe what to do if either case 1 or 2 arises. 

The main danger in joining paths is that dis- 
carding segments of L may cause the separator 
property to be violated. In order to deal with 
this potential problem we add a restriction to the 
set of vertex disjoint paths that is constructed. 
Suppose the maximum number of vertex disjoint 
paths between L and S is a, with cy 2 &rC. Let 

p = {Pl , . . . ,p&} be a maximum set of disjoint 
paths from I, to S. For the path p; from I to s we 
assign a cost equal to the length of the segment 
cut off. That is if E = llxll’, with x an endpoint 
of pi we assign it a cost of /1”1. The set of ver- 
tex disjoint paths that we find is the one that 
minimizes the total cost. In the next section we 
show that the problem of finding a mincost set 
of paths can be reduced to a matching problem 
and consequently solved by an 7WC algorithm, 

Now we show how to deal with the case 
where discarding the paths causes a large con- 
nected component to form. Suppose that P = 
{PI, . . , ,po,} is a mincost maximum set of vertex 
disjoint paths. Let T be the set of vertices not 
on any path, so 2’ = V - Q - P. The key is 
the following lemma which says that if the up- 
per segments of the paths cannot be discarded 
without creating a large connected component, 
then a different set of paths can be discarded. 

Lemma 2 If the Zargest connected component of 
T u L” has size at least f, then the largest con- 
nected component of T u (S - 3) has size less 
than $. 

Proof: The largest component of 2’ has size at 
most ; since Q is assumed to be a separator for 
the graph. There cannot be a path from a vertex 
in L* to a vertex in S - S using vertices of T. 
If there was such a path then a set of paths the 
same size as P could have been found between L 
and S with strictly less cost. The induced sub- 
graph on TuL*u(S-3) must contain at least two 
connected components. Either the components 
containing vertices of L* or the components con- 
taining vertices of S - S must have total size at 1 
most i since L* and S - S fall into different com- 
ponents. Since the largest connected component 
of T U L* is assumed to have size at least F, it 
follows that the size of the components contain- 
ing S - 3 in TU L” U (S - ,!?) is at most g. Hence, 
the largest connected component of T u (S - 3) 

has size at most $. I 

Thus, if case 1 occurs, the paths of S - 3 can 
be added to T instead of L’. Discarding the 
paths S - 3 is sufficient to achieve a constant 
fraction reduction in the number of paths and 
preserves the separator property. The remaining 
paths are L, S and P. The number of paths in 
each of these sets is at most $K, so the number 
of paths remaining is $A’. Thus, when this case 
occurs, we just discard the path S - S and Reduce 
is done. 

The other bad case is if there are few paths 
between L and S. Suppose P = (~1,. , . ,p,.} is 
a maximum set of disjoint paths and (Y < AK. 
Since P is maximum there could not be a path 
from L - i to S - S using vertices of 7’. Thus 
L - i and S - 3 fall into separate connected 
components in the graph on TU (L - 2) u (S- 3). 

By similar reasoning to above, either the graph 
on T U (L - 1) or on T.U (S - S) has connected 
components of size at most 9, so either L - L 
or S - 3 may be discarded without losing the 
separator property. Suppose the paths of L - ..k 
are discarded. Then the remaining paths are i, 
p,, and S. J$ and P each have at most &K paths 
and S has at most :K paths so the number of 
paths is reduced to , q UK paths. If the paths S-S 
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are discarded, then the remaining paths are L, 
P, and ,!? which have total size at most &K. 
In either case, a constant fraction reduction is 
achieved, so that the second bad case can also 
be dealt with. 

6 Finding Sets of Disjoint 
Paths 

We now show how the problem of constructing 
a maximum set of vertex disjoint paths can be 
reduced to a matching problem. The match- 
ing problem is to construct a perfect matching 
of minimum weight. The edges have integer 
weights of at most n. The reduction can be done 
in O(Iogn) time using n2 processors. 

The maximum set of disjoint paths problem 
can be stated as follows: Given a graph G’ = 
(V’,E’) and disjoint sets of vertices X and Y 
find a maximum cardinality s,et of vertex dis- 
joint paths that have one endpoint in X and the 
other in Y. The weighted vers6on of the problem 
is where weights are attached to the edges and 
a maximum set of disjoint patlhs with minimum 
total weight is sought. It is easy to see that this 
is the problem we need to solve to find the dis- 
joint paths for our algorithm. Each path in L 
is contracted to a vertex that is put in X, and 
each path in S is contracted tlo a vertex that is 
put in Y. The edges leaving vertices of X are 
assigned weights that correspond to the edges 
leaving paths of L. Now, the problem of finding 
a maximum set of disjoint paths from X to Y can 
be expressed as a flow problem with unit capaci- 
ties [ET751 and then reduced to bipartite match- 
ing. The weighted version of the disjoint paths 
problem can be solved by a mincost flow prob- 
lem which can be reduced to weighted matching. 
However, this approach uses many processors. 
The reason that this approach uses so many pro- 
cessors is that the reduction from network flow 
to matching substantially increases the size fo 
the graph. We solve the problem by giving a di- 
rect reduction to minimum weight matching. We 

first give a reduction of the unweighted disjoint 
paths problem to the matching p:roblem where 
the edges have weight of only zero and one. This 
allows us to dietermine the maximum number of 
paths. We then give a reduction that finds the 
minimum weight set of disjoint paths. These re- 
ductions only increase the number of vertices in 
the graph by a constant fraction. 

Lemma 3 l’he problem of finding a maximum 

set of disjoint paths can be reduced to that 01 
finding the minimum weight perfect matching in 

some graph C?’ in which every edge has a weight 
of zero or one only. 

Proof: We transform the problem of finding 
a maximum set of disjoint paths in a graph 
G’ = (V’, E’) to the problem of finding a per- 
fect matchin.g of minimum weight in a graph 
G” = (V”,E”). For convenience, we assume 
that 1x1 = \YI. Th is can be achieved by adding 
dummy verti.ces to the smaller of the two sets. 

The graph G” has vertices v;, and ~,,t for each 
v E V’ - X - Y with an edge (‘uin, uU,,t) E E”. 
There are also vertices zl,. , . ,z, and yl,. . . : ya 
in V”. We also denote these sets as X and 1’ 
in V” and d.enote V” - X - Y as W. For an 
edge (a, zu) C: E’ with U, w E V’ - X - Y there 
are edges (v;,, w,,~), (win, ‘u,,~) E E”. For an 
edge (z;, V) IE E’ there is an edge (CC;, v;~) E E” 
and similarly for (yj, V) E E’ there is an edge 
(~,,t, yj) E E”. For an edge (zi, yj) E E’, there 
is an edge (Q, yj) E E”. All the edges mentioned 
so far have weight zero. We refer to this as the 
basic construction. We add a complete bipartite 
graph with edges of weight one between X and Y 
in G”. This may create parallel edges between 
some pairs zi and yj, with one edge of weight 
zero and the other edge of weight one. 

We now show that a minimum weight perfect 
matching in G” corresponds directly to a maxi- 
mum set of disjoint paths in G’. 

Suppose we have a set of k vertex disjoint 
paths in G”. Let xiv;, , . . . , vu;, yj be a path. 

We match the edges (zi,v;,,i,), (v~i,,~~t,~j), 
and (~i~,~~t, uil+,,in) for I = 1 . . . m - 1 in G”. 

330 



The unmatched vertices of W can be matched 
(Wj,in, q,out >. The remaining unmatched vertices 
are CY - k vertices of X and CY - k vertices of Y. 
These can be matched with edges of weight one. 
Thus we have a matching of weight cy - k. 

Now suppose we have a perfect matching M 
of weight LY -k. Let M’ be the set of all edges of 
the form (q;,, q,,t ). Consider the graph with 
vertices V” and edges M $ M’, where $ denotes 
symmetric difference. The vertices of X and Y 
all have degree one and the vertices of W have 
degree zero or two. Thus, the graph consists of 
paths and cycles. The interior vertices of a path 
are alternately of the form u;,+ and ~j,,,t, so the 
paths go from X to Y. There are a paths in the 
graph. Since the matching had weight Q - k, k 
paths have weight zero. These paths correspond 
directly to paths in G’. 

We have shown a perfect matching in G” corre- 
sponds directly to a set of vertex disjoint paths 
in G’. By minimizing the weight of a perfect 
matching we maximize the number of paths, 

I 
We now show that the minimum cost set of 

paths used in the algorithm can be constructed 
by solving a weighted matching problem. Recall 
that the cost function for a path that leaves the 
path E E L from the vertex z is the distance that 
2 is from the end of the path 2. We first con- 
tract each path si E S to obtain a single vertex 
yi in G’. Then, we contract each path Zi E L to 
obtain a vertex 2; in G’ and assign a weight of 
j to an edge incident at pi if the corresponding 
edge is incident at a vertex in 1; and this vertex 
is at a distance of j from the topmost vertex in 
Zi. If the construction yields multiple edges be- 
tween zi and o, only the one of minimum weight 
is retained. All edges not adjacent to a vertex 
corresponding to a path li E L have weight zero. 

Lemma 4 The problem of finding a minimum 
cost set of disjoint paths of a gi,ven sire can be 
reduced to the problem of finding a minimum 
weight perfect matching in a graph with at most 
2n vertices and edges of weight at most n. 

Proof: Suppose we want to find a set of k dis- 
joint paths of minimum weight between X a.nd 
Y. We construct a graph G” = (V”, E”) in which 
a minimum weight perfect matching corresponds 
directly to a minimum weight set of k disjoint 
paths in G’ = (V’,E’). Suppose 1x1 = o! and 
\Yl = ,O. We begin with the basic construction 
used above. The edges inherit their weights for 
G’, so edges leaving vertices of X may have non- 
zero weight and the other edges have weight zero. 
Instead of adding a complete bipartite graph be- 
tween X and Y, we add two sets of vertices 2 
and Y where X = Q! - k and Y = p - k. We 

I I I I 
add complete bipartite graphs between X and 
X and between Y and ?. These edges all have 
weight zero. 

By an argument that is almost identical to the 
one used in Lemma 1, it can be shown that there 
is a direct correspondence between a set of k dis- 
joint paths in G’ and a perfect ma.tching in G”. 
The weight of the matching is the same as the 
weight of the disjoint paths, thus we can find 
the minimum weight set of paths by finding the 
minimum weight perfect matching, I 

Theorem 1. Let PMM(~) and Tm~(n) denote, 
respectively, the number of processors and the 
parallel time required to compute a minimum 
weight perfect matching of an n-node graph G” 
that has a weight of at most n on all its edges. 
Then, the minimum cost set of vertex disjoint 
paths can be found in O(Z’MM(n)) parallel time 
with PM&~) processors. 

Proof: The above reductions are used in two 
stages. The first reduction is used to find the 
maximum number of disjoint paths, and then the 
second one is applied to find the minimum cost 
set of disjoint paths of that size. The time and 
number of processors are dominated by the cost 
of solving the matching problems. 
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7 Constructing an Initial Seg- 
ment 

In this section we complete the description of 
the algorithm that constructs an initial segment 
T’ of some depth first search tree. The routine 
constructs the initial segment :from a separating 
set of paths Q. The initial segment, is rooted at T 
and has the property that the largest connected 
component, of V - T’ has size at most 5, so T’ 
could also be viewed as a sepazator. The set, Q 
is assumed to have at most a constant number 
of paths, (the bound is 11). 

The routine to construct the initial segment is 
essentially a sequential algorithm; its only use of 
parallelism is in the low level routines that ma- 
nipulate the graph. The algorithm maintains a 
subtree 5?. Initially, 5!’ is just the vertex T. A 
step of the algorithm is to take one of the paths 
q E Q and to extend the subtree to contain at 
least half to the path 4. This is done by pick- 
ing the lowest vertex on 5? from which there is 
a path to q. Suppose the path p is from x E p 
to y E q where q = q’yq” and q’ is at least as 
long as q”. The path pq’y is added to 2? and the 
path q is replaced by q”. Note that the length of 
the path q is reduced by at least half. Since the 
number of paths initially in Q is at most 11, the 
number of phases until all paths of Q are used up 
is at most 11 log n. An individual phase of the 
algorithm can easily be done in O(log2 n) time, 
so this algorithm runs in O(10g3n) time. At the 
end of the algorithm, the subtree p is an initial 
segment such that the largest connected compo- 
nent of V - 5! has size at most t. To show that 

? can be extended to a depth first search tree it 
is sufficient to prove that there are no paths be- 
tween separate branches of ?’ that have all their 
interior vertices in V - ‘?. This condition holds 
through out the execution of the algorithm since 
the extensions are made from the lowest vertex 
possible. The largest connected component of 
V - ? has size at most f since 5! contains all 
vertices on paths in Q and Q is a separator. 

8 Algorithm Summary 

The preceding sections have described our par- 

allel algorithLm for depth first search. We now 
give a more formal version in pidgin PASCAL to 
facilitate the timing analysis’. 

DFS(G, r) 
T’ t InitialSegment(G, r); 
for each connected component C of’ G - T’ do 

recursively compute a dfs tree for C; 
add the tree for C to T’; 

InitialSegment(G, r) 
Q +-Vi 
while IQ1 > 11 do 

Reduce(Q); 
Build the initial segment from Q; 

The main routine of the algorithm is Reduce. 
In the code for the routine we use the following 
notation which is consistent with the notation 
used above. The set Q is divided into two sets 
of paths, L and S. A set of disjoint paths P 
is found between L and S. The joined paths of 
L and S are i and 3. The upper segments of 
the paths of i above the join are denoted L”. 
The vertices not on any of the paths are T, so 
T = V - Q -- P. For a subset X of the vertices, 
we use ICC(X) to denote the size of the largest 
connected clomponent of the subgraph induced 
on X. 
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Reduce(Q) 

If c- I&I; 
Divide & into twosets, L and S, where IL1 = $I( 

and ISi = 2K; 
f while IQ/ > &If do 

Find mincost disjoint paths P = (~1, . . . , paI 
between L and S; 

if (Y < j$K then 

if Icc(TlJ (S - 3)) < i then 

Q+-LUhJP; 
else 

Q+SuhP; 
return 

else if Icc( T u L*) > 3 then 

Qduh~P; 
return 

else 
Extend the paths of f;. Suppose p joins 1 

and s, x and y are the endpoints of p and 
1 = l’tl”, $ = sly’s”. If Is’1 1 Is”) then 
1 + 1’~s’ and s c s”, otherwise, 1 + 1’~s” 
and s + s’. In both cases, 1” is discarded. 

The algorithm has three levels of iteration or 
recursion: the recursive contruction of dfs trees 
for components, the calls to Reduce to reduce the 
size of the separator, and the step of extending 
paths. Each of these can be executed O(logn) 
times, so the run time is O(log3n) times the 
time of the inner loop of Reduce. The run time 
for the inner loop is dominated by the cost of 
finding the disjoint paths, which is solved as a 
ma.tching problem. Matching can be solved in 
O(log2 n) time [MVV87], so our algorithm runs 
in O(log5 n) time. The only step of the algor- 
ithm which is expensive in terms of processors 
it finding the mincost set of disjoint paths. In 
Section 6, we showed that this problem could be 
reduced to the problem of finding a minimum 
weight perfect matching in a graph with edge 
weights of at most n. The number of vertices in 
the graph that we reduce the problem to is O(n). 
Thus, the matching problem can be solved with 
nM(n) processors [MVV87], where n/i(n) is the 
number of processors that are needed to multiply 
matrices. 

9 Discussion 

In this paper, we presented a fast parallel algor- 
ithm for computing a depth first search tree of an 
n-vertex graph. We showed that the depth first 
search problem is in Rn/C and if the problem of 
minimum weight maximum matching is in n/C 
then so is the depth first search problem. Conse- 
quently, this paper disproves a widespread belief 
that the computation of a depth first search tree 
is an inherently sequential process. 

There are two major problems related to par- 
allel depth first search that this paper leaves 
open. The first is whether depth first search can 
be solved by a deterministic parallel algorithm 
in polylog time. This could be shown by either 
giving an n/C algorithm for matching or by find- 
ing a different approach for parallel depth first 
search that does not rely on network flow ideas 
to find disjoint paths. The second open problem 
is for the depth first search of a directed graph. 
Our algorithm breaks down almost immediately 
for the case of directed graphs. It would be in- 
teresting to see if similar ideas to ours could be 
applied to directed graphs. 
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