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A SCHEME FOR FAST PARALLEL COMMUNICATION*
L. G. VALIANTY

Abstract. Consider N = 2" nodes connected by wires to make an n-dimensional binary cube. Suppose
that initially the nodes contain one packet each addressed to distinct nodes of the cube. We show that
there is a distributed randomized algorithm that can route every packet to its destination without two
packets passing down the same wire at any one time, and finishes within time O(log N') with overwhelming
probability for all such routing requests. Each packet carries with it O(log N) bits of bookkeeping
information. No other communication among the nodes takes place.

The algorithm offers the only scheme known for realizing arbitrary permutations in a sparse N node
network in O(log N) time and has evident applications in the design of general purpose parallel computers.

Key words. network routing, Monte Carlo algorithm, randomization, parallel computers

1. Introduction. We propose a solution to a fundamental communication prob-
lem. Suppose that N devices connected together by a sparse network of wires wish
to communicate amongst themselves simultaneously. Suppose also that the communi-
cation pattern is unpredictable and rapidly changing as may be required, for example,
when the devices are computers cooperating in executing a parallel algorithm. The
problem is to specify a network topology and a routing algorithm that can implement
arbitrary such communication requests efficiently.

In particular we consider the paradigmatic communication requirement of a
permutation. Each device is a node of the network and has a distinct name x from
the set {0, 1, - - -, N —1}. Initially node x contains a ‘“‘packet” labelled by an address
a(x)e{0,1, ., N—1} that is the destination node to which the packet is to be sent.
If the N addresses are all distinct then the communication requirement is a permu-
tation.

The contraint of having only a few wires from each node, and hence a sparse
graph is dictated by physical limitations. It implies that it will take a long time to
gather complete information about the permutation request at any one node, as this
would have to be done largely sequentially. This strongly suggests that we need to
look for a distributed routing strategy that does not require any node ever having
more than fragmentary information about the permutation.

There are several quantitative criteria according to which such parallel communi-
cation schemes (PCSs) may be judged. The scheme that we propose provably achieves
the following parameters:

1. Speed. Every permutation can be implemented in O(log N) steps. (By a step
we mean the time taken to transmit a packet along a wire. Computations carried out
locally at a node are not counted here).

2. Sparsity. Each node has O(log N) wires from it.

3. Simplicity. The bookkeeping information carried with each packet (e.g., its
address) is small (O(log N) bits). Such information is never transmitted except when
accompanying a packet. The local computations needed at each node are easy and
efficiently parallelizable.

4. Flexibility. (i) Besides complete permutations it can also implement partial
ones. (ii) No global synchronization is required.
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There are essentially only two previously known constructions on which rival
schemes could be based: Batcher’s sorting networks [2] and the permutation networks
of Benes [3], [10]. The former suffers from the disadvantages that it requires Q(log> N)
steps and cannot directly do partial permutations. The problem with the latter is that
the only fast parallel routing algorithms known require global information and take
time Q(log> N) even on a parallel random access model of computation [6]. An
advantage they do share over our scheme is that of greater simplicity in the local
computations, but this appears to be of ever diminishing relevance for currently
anticipated technologies.

In our scheme the network topology is simply the n-dimensional binary cube.
We therefore consider values of N with N =2" for some integer n. Between every
pair of adjacent nodes of the cube we draw a pair of oppositely directed edges to
represent communication in the two directions. This topology has been suggested
frequently before. For a survey and bibliography see Siegel [8]. Previous schemes all
require at least Q(log” N) steps for some inputs.

The claimed speed of our scheme needs one qualification. The routing algorithm
makes random choices in the same sense as the famous primality tests of Strassen
and Rabin [7], [9]. It is correct for all inputs (i.e., permutations) and, for some constant
C will terminate in C - log, N steps with overwhelming probability. A noteworthy
feature of the algorithm is that its runtime distribution is provably identical for every
input. The algorithm is therefore festable in the sense that its general behavior for a
fixed N can be determined with great confidence by running it often enough on any
one input (even the identity permutation!). Since the analytic techniques we use, or
can envisage, yield relatively crude complexity bounds, making comparisons among
refinements of the algorithm is probably possible only by experimentation. We empha-
size that here experimental results can be given a rigorous interpretation, a circum-
stance that we have not met before in as strong a sense in the context of algorithms.

2. Outline of the algorithm. In describing the algorithm we identify each packet
by its starting node. Denoting the set {0, -+, N —1} by V, the name of each packet
is therefore a number s € V.

The algorithm consists of two phases run consecutively. Phase A sends each
packet s € V to a randomly chosen node u(s)e V. For each s every u € V has the
same probability (i.e., 1/N) of being chosen, and the choices for the different packets
are independent of each other. The second phase then routes each packet s from u(s)
to its correct destination ¢t = a(s).

At each instant there is just one copy of each packet, and this is either (a) being
transmitted along an edge, or (b) wating in a queue associated with such an edge, or
(c) stored as loose at a node.

For simplicity of exposition the algorithm is described in synchronized fashion
although this is inessential. In this form the algorithm alternates between being in a
transmitting mode and a bookkeeping mode. In the former case the packet at the
head of each queue is transmitted along the edge associated with it and stored as
loose at the recipient node. In the bookkeeping mode each loose packet is assigned
to the queue of one of the outgoing edges according to some random choice, unless
it has nowhere further to go in the current phase. (For a description of this algorithm
in less synchronized form see [11], [12].)

In Phase A each packet makes for itself a random ordering of the n dimensions.
It considers each one in turn and according to the toss of a coin makes, or refrains
from making, a move in that dimension from its current position. (By making a move
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we mean here that we add it to the appropriate queue. Actual transmission may be
delayed by the presence of other packets in the queue.) It is immediate that with this
procedure for any fixed packet every node has the same probability of being its
destination. What needs to be proved is that no packet will have to wait in queues
for more than O(n) steps.

Phase B is similar except now each packet considers the set of dimensions in
which its current location differs from its final destination, and moves along one
randomly chosen such dimension at each step. Correctness is again immediate. What
needs to be proved is that under the assumption that the packets are initially at
randomly chosen nodes (as guaranteed by Phase A) no packet will wait in queues for
more than O(n) steps.

Analysis similar to Lemma 1 in § 4 shows that in each phase the probability that
Cn different routes visit any one node is bounded above by exp {—Cn/4}. This gives
a crude upper bound on the maximum number of packets that may reside at any one
node at any one time.

3. The algorithm. The n-dimensional cube will be represented by the set V =
{0,1,:-+,N—1} of N=2" vertices. For ie{1,:++,n} and xe V, x' denotes the ith
most significant bit in the n-bit binary representation of x. Also x[i is the number
obtained by changing the ith bit of the binary representation of x to its complement.
The n2" edges of V are therefore the pairs

{x, xf)lxeV,ie{l, -, n}}

For each such edge there is a “Queue(x, {)”’ that feeds it and resides at node x. At
each node x there is a set “Loose,” in addition to the n queues.

In the algorithm the subroutine call “Transmit x*’ means ‘for each i transmit the
packet at the head of Queue (x, i) to node x/i and add it to the set Loose,’.

“Pick d € D” means ‘assigning equal probability to each member of set D choose
a random element of D and assign it to variable d’.

Each packet v € V is associated with a set T ={1, - - -, n}. In Phase A it consists
of the set of dimensions along which possible transmissions have not yet been con-
sidered. In Phase B it is the set of dimensions along which transmission still has to
take place. Each of the phases is said to be finished when for every v e V T, is empty.

The routing algorithm consists of calling Phase A followed by Phase B, with the
constants F, G chosen large enough that both algorithms finish with overwhelming
probability. Note that when Phase A is finished all the queues are empty, and Loose,
contains the set of packets randomly assigned to node x. Hence when Phase B is
entered all the packets are loose and the queues empty.

The algorithms are described in Algol-like notation. Parallel execution of a block
with variable d ranging over set D is denoted by

For d € D cobegin - - - coend.

The reader can verify by inspection that both phases are correct: when the first
one finishes the packets are at independently chosen random nodes, after the second
one they are all at their final destinations.

We remark that neither correctness nor the subsequent analysis depends on the
particular disciplines used for maintaining the queues or the loose sets. The only
assumption is that they are sets in which elements can be added or taken away. A
second remark is that, in practice, the innermost loop could by implemented by a
special purpose chip exploiting parallelism rather than by a sequential computation.
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Phase A
For s € V cobegin Loose, := {s}.
T, ={1, ---,n}
coend
For f:=1 step 1 until F do
For s € V cobegin if Loose, # J then for
each v € Loose, with T, # & do
begin Pick i € T,
T, = T,—{i}.
Pick a €40, 1}.
if « =1 then
begin add v to Queue(s, 7).
Loose, == Loose, —{v}.
end.
end.
Transmit s.
coend

Phase B

For x € V cobegin if packet with address x is at node u
then T, = {i|x’ # u'}.
coend
For g = 1 step 1 until G do
For u € V cobegin if Loose, # J then for
each v € Loose, with T, # & do
begin Loose, := Loose, —{v}.
Pickie T,.
T, = T,—{i}.
Add v to Queue(y, i).
end
Transmit u.
coend.

4. Analysis of the algorithm. The aim of the analysis is to show that for a
sufficiently large constant C the routing algorithm will finish within 2Cn steps with
overwhelming probability.

THEOREM. For any constant S there is a C such that for F = G = Cn both phases
of the routing algorithm finish with probability greater than 1—275",

For the analysis we need some facts from probability theory. Suppose that we
have N independent Bernoulli trials each with probability p. Then the probability
B(m, N, p) that at least m of the trials are successful is bounded above by the normal
distribution in the following way [1]:

Fact 1. If m = Np(1+ B) where 8 €[0, 1] then B(m, N, p)=e #*N?/2,

We shall be interested in independent trials with varying probabilities (i.e., Poisson
trials). If we have N such trials with probabilities py, * * * , pn, such that p; = Np then,
as is well known, the variance in the number of successes is maximal when p; = p, =
+ + + = pn = p. The following theorem of Hoeffding [5] is a stronger version of this.

Fact 2. If T is the number of successes in N independent Poisson trials with
probabilities py, * -+, pn, then if Ep; = Np and m = Np +1 is an integer, then

Pr(T=zm)=B(m, N, p).
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For combinatorial formulae we shall use the notation n, to denote n!/(n—r)!,
and (7) to denote n,/r!. From elementary considerations it is easy to verify the following:
Fact 3. Foralln

0

Fact 1 is an estimate of the tail of the binomial distribution near the mean. For
our main theorem we need estimates further from the mean and for this we use the
following bound.

Fact 4. If n = Np is an integer then

uM:
w|wn

=

B(m, N, p)<(Np) ce™ NP
m

Proof. Chernoft’s bound [4] is

=) (42"

Putting x = (N —m)/(m — Np) and using (1+x~")* <e gives the required bound. O

The analysis of the two phases A and B are rather similar and will be given in
tandem. The basic notion is that of a route, denoted typically by R ={ey, €2, * *, en}
where each ¢; is an edge (x;, y;). A route is any path in the cube in which no two edges
traverse the same dimension, i.e., if for some &

xifk =y; and x;fk=y;

then i =j. Thus routes are minimum distance (acyclic) paths between their end points.

For any fixed route R and node s € V the event that “in running Phase A at
least one edge occurring in the route from s also occurs in R’ will be denoted by
“|RNs->|=1”. For any fixed route R and node t€ V the event that “in running
Phase B, with the packet destined for ¢ initially at a randomly chosen node, at least
one of the edges occurring in the route of that packet also occurs in R’ will be denoted
by “|RN~>t|=1”. More generally, “s-" denotes the route from s, “—¢” the route
to f, and “x »y - z” a route from x via y to z. The intersection Q N R of two routes
Q and R is the set of common edges. “R through x” is the event that the route R
goes through x.

The first lemma bounds the number of routes that intersect with any one route.

LEMMA 1. ForallR={ey,***,es}and C=1

(A) Pr([RNs-|=1 for at least Cn values of s) = exp {—Cn/4}.

(B) Pr (RN ~>t|=1 for at least Cn values of t) < exp {—Cn/r}.

Proof. (A) Let

h h
=Pr((RNs>|z=1)= Y Pr(ees~>)= Y p, say.
i=1 i=1

Since the n2" edges in the cube have identical roles one can argue that, by symmetry,

Y psi= Y Dsj
seV

seV
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for any i,je{l,- -+, h}. Hence

Z psgh Z DPs1.

seV seV

But Y ps1 is simply the fraction 1/(n2") of the expected total number of edges
occurring in the 2" routes. Since the expected number of edges on each route is n/2,

h
Y Ps=h ¥ pa=

seV seV 2

We therefore have N independent Poisson trials with respective probabilities
Do, P1,* * * » Pn—1 that have sum h/2.
By Fact 2
h Cn

Pr (at least Cn successes) = B( Cn, N, (2_1\/—)) = B( Cn, N, m)

since h =n and C = 1. Hence applying Fact 1 with 8 =1

Pr (at least Cn successes) = exp (— %ﬁ)

(B) Let p,=Pr (PN ~>¢|=1). Then by the same argument as used in (A) we get

h
Y p=z

teV 2

and hence the required result. 0O

We note that the packet routes in Phase B when viewed in reverse are identical
to the packet routes in Phase A. The source nodes in Phase A, like the targets in
Phase B, represent each node of the graph exactly once. The targets in Phase A, like
the source nodes in Phase B, represent random mappings of the N packets to the N
nodes. Since our proofs concern only the routes themselves, independent of timing
considerations, the proofs for Phase B will be always essentially the same as for
Phase A.

If we could assume that two paths never intersect more than once then Lemma
1 would suffice to prove the Theorem. Unfortunately this is not the case. The following
rough argument shows that in Phase A with large probability at least one pair of
routes will be identical for about n/log n consecutive edges: consider two routes from
neighboring starting nodes. With probability (2n) " the first packet goes to the starting
node of the second at the first step, and with probability ((n — 1)) it then follows
the second path for r steps (provided both make r steps, which is most likely if
r=n/log n < n/2). But 2n,.1)" " exceeds 27"V if r <n/log n, and there are 2" such
pairs of routes to consider. It is therefore likely that at least one such pair follow each
other for n/log n steps.

We therefore need the following lemma to bound the probability of two routes
having r edges in common.

LEMMA 2. Let R and Q be routes of length j from node x to node y. Suppose that
R is fixed and Q is randomly chosen from all such routes. Then for K =3

Pr(lRﬂQ|§r)§—]I,{—.

r
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Proof. The result is established by induction on r. It is clearly true for » = 0. Suppose
it is true for r = 0. Suppose it is true for r— 1. Let R =eje, * * * ¢, Then Pr (RN Q|=7)
is less than

j—r+1

Y Pr(|emss - - - efno|gr—1‘emeo) - Pr (em € Q)
m=1

j—r+1 g1 1

s (i—m)r-l'(mf_l)u—mH)

A

Lol =D j—m—r+1)! !
éK. Uy (m—1) ({ m—r+1) gK—_—- by Fact3. 0O
Jr me1 (]—r)! Ir

Lemma 4 will show that the probability of a random route intersecting any fixed
route r times vanishes exponentially with r increasing. As a preliminary we need to
examine an effect of distance in the cube. For y, z € V the Hamming distance H (y, z)
is the number of bits in which the binary representations of y and z differ, i.e.,

H(y,2)=|{i)yi#zi}|-

LEMMA 3. Foranys,t,xe Vwith H(s,x)=H(x, t)=k,
(A) in Phase A

Pr (s - through x) = 1/(:),
(B) in Phase B

Pr (>t through x) = 1/(:)

Proof. (A) The probability that the route from s has length at least k is clearly
B(k, n,3). Now there are (§) nodes at Hamming distance k from s. Assuming that the
route from s does have length at least k the probability of it passing through any one
of these nodes must be, by symmetry, the same as for any other, namely 1/(%). Hence

1
Pr (s - through x) = Pr (s - through x ‘ls»l =k)-Pr(s>|zk)s—- 1.

(k

1
Pr (-t through x) = Pr (= through x l lt=>|= k) Pr(~>tz=k) =— 1. O
(&)
LEMMA 4. For any fixed route R the expected number of packet routes in Phase
A (and similarly Phase B) which have at least r edges in common with R is
4nr
2

A =13 Pr(ls->ﬂR|§r)§min{nn ’"}-
seV r

Proof. We give the proof for Phase A. The analysis for Phase B is identical when
the packet movements are played in reverse.
The bound on 7 is a restatement of the fact observed in Lemma 1 that
Y ps<n.

seV
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Now consider the other bound. Suppose that R=eje,- e, and that it visits
Y0, Y1, * * * » Yu in turn. Let Vj, be the set of nodes such that H(s, y;) =k, and y;_, is
the first node of R for which route s> y;_,—>y; is possible (i.e., s> yi_g_1=>y; is
impossible). This is illustrated in Fig. 1.

1-m
Vi1
YO 1‘s____-4 Y
L B i__g
S
FiG. 1.
Now
n—g
| vl (3 )
() l kgl k—g

Let p; =Pr(s>NR|= r‘s - through y;). Consider now s € Vj, for some fixed i, k and
g, and let y be the first node of R that s— visits. In this case

psi = Y Pr (¥ = yi-m|s > through y)
“Pr(s->Nei—pme1*** eilér'y =y;_m and s - through y,)
g 1 K’
@ sy
m=r( ) mr
k—m
r g r
=%- ) (k—m)!(m—r)!é%-(g—r+1)-(k—r)! sincer=m=g=k.
By definition

h
A,=% Pr(s>NR|zv)= Y ¥ ps-Pr(s~>throughy,).

seV i=1seV

Since for each i the sets Vi, partition V

h n i
A=Y Y Y Y psPr(s-through y;).

i=0 k=rg=rse Vg

Using (2) and Lemma 3, we can bound the summand by

r

K 1
R g-r+1)-(k—r)!-——.

()
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By virtue of (1) the sum of the above over Vi, is
5_’.(g—r+1)(k—r)!'k!(n—k)!. (n—g)!

k! n! (k—g)l(n—k)!
_(g—r+1). (k—-r)g_,.K,S(g—r)K'.
n, (n_r)g—r o n,
Hence
h n 31
A=K 55 5 goren="tK
Ny i=0k=rg=r n,

as required. 0O

Although the exponent of # in Lemma 4 can be improved by more careful analysis
its value is immaterial unless we wish to study the exact relationship between S and
C in the theorem.

Proof of Theorem. We give a proof for Phase A. The argument for B is identical.
Consider any route R and a suitably large constant C. The number of edges a route
has in common with R we shall call its overlap r. In the analysis we deal with overlaps
in three different ways depending on which of the following ranges it falls in:

el [di—] [n],
logx n logz n

for an appropriate constant « to be defined. The second range is itself split into about
log, n subranges [2',2"*"] and C is large enough that

Cn
24(r—a)(loga n —a)

exceeds unity for all values of r in the second range.
In particular we observe that

Pr(zs: |s—>ﬂR|§Cn)

=Pr (ls - NR|=1for at least %— values of s)

+Y Pr(E;)+Pr (Is ->NR|= ® _ foratleast £:values of s)
i 10g2 n 3

=Pr(EY)+Pr (E})+Pr (E%, say

where each component E; of E % s itself the event

; Cn
13 R = i f tl t i = - ”,
|s > NR|=2’ for at least m;(n) 24(2,__a)(log2n_a)valuesofs
In order to verify (5) we note that if the overlap sum exceeds Cn then E Ve E,
E;i1, -+, E® cannot all be false, for if they were then the contribution from each of

the three ranges E*, E? and E? would be less than Cn/3. In particular, if E ! is false
then the overlap sum in the range [1, 4a] is clearly less than Cn/3. The same holds
for E>. Finally, if every E; of E ? is false also then the overlap sum in the second range
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is at most
IO§ n ' Cn i+l - _C_:_n_
i=llogs 4| 242" —a)(loga n — ) -3

for all sufficiently large n.

It remains to show that for a suitable @ however large S is chosen there exists
C such that the probabilities of E ! E? and E? are all bounded by (3)27%*P" For we
can then deduce from (5) that

Pr (Z |s>NR|= Cn) =2 *bn

Since there are N =2" routes R the probability that some of them do have such a
large overlap sum is then at most 27" as required.

That for everya and S Pr (E H=(3)27%*P" for asuitable C is merely arestatement
of Lemma 1 and nothing further needs to be proved.

To bound E? it is sufficient to prove the claim that for some C for each
i Pr(E)=(3n)"'27S*b", By Fact 2 it suffices to consider the event that at least
m =m;(n) successes occur in N trials with equal probabilities. By Lemma 4 this
probability is at most

n*2" ;
p= aN where r =2/,
4—r22r ) n
= N sincer=2'< > in this range.
Using Fact 4
B(m, N, p)=(N] )"'e'”<( 2% )m=X sa
LIRS ] p = p = mn r—4 ’ y
Then
log, X = Cn +(2r—(r—4)logz n+log, e)
24(r—a)(logz n —a)
—Cn . i
= — = = > .
=—1 fa=4andr=2'>4a«a

We conclude that Pr (E;)=2"“"?* which is less than 3n) 27" for C chosen
large enough.

Finally to bound E* we need an estimate with » = n/log, n and m = C/3. Here
the analysis for E* applies since for r = n/log, n

Cn
24( n__ )(10 n-a)
logz n « g2 «

Hence the required bound of (1/ 3)2 S+ certainly holds for E>.

We have shown therefore that the overlap sum for the route of each packet is
suitably small. Since the overlap sum for a packet bounds the total time it waits in
queues the result is established. Although the proof was valid only for sufficiently
large values of n, the Theorem can be made to hold for all values of n by always
choosing C large enough to cover the remaining small cases. 0

=— for all sufficiently large n.

3
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5. Remarks.

1. Testability. The two phases of the algorithm are testable in the following sense.
Phase A is independent of the input altogether. Running it on, say, the identity
permutation for different values of F and testing whether it has finished is therefore
a method of sampling the distribution of the runtime needed for finishing. In the
overall routing algorithm Phase B is used with the packets initially placed randomly
in the cube. Hence the distribution of the runtime needed for finishing in Phase B
can be sampled by running it with packets placed initially at random. In this way
suitable values of F and G can be obtained experimentally. Such experimental results
are reported in [11].

2. Variations. For practical purposes there is no reason why every packet should
wait for Phase A to finish before embarking on Phase B. A modified algorithm in
which any packet v immediately enters Phase B as soon as T, becomes empty in
Phase A will also clearly have its runtime bounded by the analysis above, provided
the queuing discipline always gives preference to packets still executing Phase A.

Another kind of modification is required if we want the algorithm always to finish.
Instead of cutoffs we would have global checks at every n steps to test whether the
algorithm has finished. This can be done by collecting one bit of information from
each node and collecting their conjunction at one node. For this O(n) steps are
sufficient where, now, a step consists of transmitting a fixed piece of bookkeeping
along a wire. With this modification each phase is always correct and for all sufficiently
large H finishes in time H - log, N with overwhelming probability.

A further variation is possible if we wish to simplify the local computations at
the expense of carrying more bookkeeping information. In that case we can precompute
the whole of the route for each packet before it leaves its initial node. This also avoids
holdups in Phase A that occur whenever a = 0 is picked. Note that such holdups occur
at most n times for any route and could also be avoided by adding an ‘“until @ =1”
inner loop to Phase A.

3. Queuing disciplines. The proofs given apply to all disciplines, e.g., “first in-first
out”, “first in-last out”’. Experimentation appears to be the only method of choosing
amongst them. More complicated alternatives include ‘“packets with farthest to go
first out™.

4. Obliviousness. An essential feature of this algorithm is that the route taken
by each packet is determined entirely by itself. The other packets can only influence
the rate at which the route is traversed. For this reason no global synchronization is
required. Indeed, the scheme appears to be well suited to supporting a continuous
stream of communication requests from packets generated at the nodes, as long as
the traffic flow does not saturate the system either as whole, or by requesting one
node or region of it too frequently.

As an alternative “adaptive” algorithms could be considered. For example,
one could route the packets from a node so as to minimize the maximal queue
length there. Unfortunately such strategies appear to be beyond rigorous analysis or
testability.

5. Necessity for Phase A. Phase A may appear unnatural at first sight since it
may route a packet to distant parts of the network even when its destination is near
its source. It is natural to ask therefore whether Phase B on its own works in O(n)
steps for all inputs, rather than merely for most inputs. A negative answer to this can
be derived as follows: Consider any edge ¢ = (x, y). There are (*7) nodes at distance
r from x from which routes can go through e. For each such node z choose as its
destination one of the (*;") nodes at distance r from y to which a route can go from
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z via e. The reader can verify that if » =(n —1)/2 then this is always possible. Now
consider Phase B applied to such a set of (") packets. Since each route will intersect

e with probability
-1
(r+ 1)—‘(———2’:r 1)

the expected number of routes intersecting e will be

(n—1) rir! =(r+1) (n—1), =D, _, l)'l( (n —1))'
r'(n—r-—l)' Qr+1)! @2r+1), 2r+1)
If r=n/J this quantity grows as 2" where y equals (log, (J/2))/J, which is positive
if J>2. Hence if Phase B is started on a suitably bad input it will require N rather
than logarithmic time.
We note that the above estimation is asymptotic. For small values of # it is clearly
advantageous to omit Phase A.

6. Alternative algorithms. Recently [12] it has been shown that if in each phase
the dimensions are traversed in order of dimension number then the proof of the
(log N) runtime is much simplified, essentially because the 1ntersection of any two
routes must then be a contiguous sequence of edges.
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