
Optimal and Sublogarithmic Time

Randomized Parallel Sorting Algorithms1

Sanguthevar Rajasekaran2

John H. Reif2

Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138.

Abstract.We assume a parallel RAM model which allows both concurrent reads

and concurrent writes of a global memory.

Our main result is an optimal randomized parallel algorithm for INTE-

GER SORT (i.e., for sorting n integers in the range [1; n]). Our algorithm costs

only logarithmic time and is the �rst known that is optimal: the product of its

time and processor bounds is upper bounded by a linear function of the input

size. We also give a deterministic sub-logarithmic time algorithm for pre�x sum.

In addition we present a sub-logarithmic time algorithm for obtaining a random

permutation of n elements in parallel. And �nally, we present sub-logarithmic

time algorithms for GENERAL SORT and INTEGER SORT. Our sublogarith-

mic GENERAL SORT algorithm is also optimal.

Key words. Randomized algorithms, parallel sorting, parallel random access

machines, random permutations, radix sort, pre�x sum, optimal algorithms.

AMS(MOS) subject classi�cations. 68Q25.

1A preliminary version of this paper appeared as \An Optimal Parallel Algorithm for Integer Sorting" in

the 18th IEEE Symposium on FOCS, Portland, Oregon, October 1985.
2Supported by NSF-DCR-85-03251 and ONR contract N00014-80-C-0647

1

RANDOMIZED PARALLEL SORTING

2

1 Introduction

1.1 Sequential Sorting Algorithms

Sorting is one of the most important problems not only of computer science but also of every

other �eld of science. The importance of e�cient sorting algorithms has been long realized by

computer scientists. Many application programs like compilers, operating systems, etc. use

sorting extensively to handle tables and lists. Both due to its practical value and theoretical

interest, sorting has been an attractive area of research in computer science.

The problem of sorting a sequence of elements (also called keys) is to rearrange this

sequence in either ascending order or descending order. When the keys to be sorted are

general, i.e., when the keys have no known structure, a lower bound result [1] states that

any sequential algorithm (on the random access machine (RAM) and many other sequential

models of interest) will require at least
(n log n) time to sort a sequence of n keys. Many

optimal algorithms like QUICK SORT, and HEAP SORT whose run times match this lower

bound can be found in the literature [1].

In computer science applications, more often, the keys to be sorted are from a �nite set.

In particular, the keys are integers of at most a polynomial (in the input size) magnitude.

For keys with this special property, sorting becomes much simpler. If each one of the n

elements in a sequence is an integer in the range [1; n] we call these keys integer keys. The

BUCKET SORT algorithm [1] sorts n integer keys in O(n) sequential steps. Notice that the

run time of BUCKET SORT matches the trivial
(n) lower bound for this problem.

In this paper we are concerned with randomized parallel algorithms for sorting both

general keys and integer keys.

1.2 Known Parallel Sorting Algorithms

The performance of a parallel algorithm can be speci�ed by bounds on its principal resources

viz., processors, and time. If we let P denote the processor bound, and T denote the time

bound of a parallel algorithm for a given problem, the product PT is, clearly, lower bounded

by the minimum sequential time, Ts, required to solve this problem. We say a parallel

algorithm is optimal if PT = O(Ts). Discovering optimal parallel algorithms for sorting

both general and integer keys remained an open problem for a long time.

Reischuk [25] proposed a randomized parallel algorithm that used n synchronous PRAM

processors to sort n general keys in O(log n) time. This algorithm however is impractical

owing to its large word-length requirements. Reif and Valiant [24] presented a random-

3

ized sorting algorithm that ran on a �xed connection network called cube connected cycles

(CCC). This algorithm employed n processors to sort n general keys in time O(log n). Since

(n log n) is a sequential lower bound for this problem, their algorithm is indeed optimal.

Simultaneously, [4] discovered a deterministic parallel algorithm for sorting n general keys in

time O(log n) using a sorting network of O(n log n) processors. Later Leighton [17] showed

that this algorithm could be modi�ed to run in O(log n) time on an n-node �xed connection

network.

As in the sequential case, many parallel applications of interest need only to sort integer

keys. Until now, no optimal parallel algorithm existed for sorting n integer keys with a run

time of O(log n) or less.

1.3 Some De�nitions and Notations

Given a sequence of keys k1; k2; : : : ; kn drawn from a set S having a linear order <, the

problem of sorting this sequence is to �nd a permutation � such that k�(1) < k�(2) < : : : <

k�(n).

By general keys we mean a sequence of n elements drawn from a linearly ordered set

S whose elements have no known structure. The only operation that can be used to gain

information about the sequence is the comparison of two elements.

GENERAL SORT is the problem of sorting a sequence of general keys, and INTE-

GER SORT is the problem of sorting a sequence of integer keys.

Throughout this paper we let [m] stand for f1; 2; : : : ;mg.
A sorting algorithm is said to be stable if equal elements remain in the same relative

order in the sorted sequence as they were in originally. In more precise terms, a sorting

algorithm is stable if on input k1; k2; : : : ; kn, the algorithm outputs a sorting permutation �

of (1; 2; : : : ; n) such that for all i; j 2 [n], if ki = kj and i < j then �(i) < �(j). A sorting

algorithm that is not guaranteed to output a stable sorted sequence is called non-stable.

Just like big-O function serves to represent the complexity bounds of deterministic al-

gorithms, we employ eO to represent complexity bounds of randomized algorithms. We say

a randomized algorithm has resource (like time, space, etc.) bound eO(g(n)) if there is a

constant c such that the amount of resource used by the algorithm (on any input of size n)

is no more than c�g(n) with probability � 1 � 1=n� for any � > 1.

4

1.4 Our Model of Computation

We assume the CRCW PRAM model proposed by Shiloach, and Vishkin [26]. In a PRAM

model, a number (say P) of processors work synchronously communicating with each other

with the help of a common block of memory. Each processor is a RAM. A single step of

a processor is an arithmetic operation, a comparison, or a memory access. CRCW PRAM

is a version of PRAM that allows both concurrent writes and concurrent reads of shared

memory. Write con
icts are resolved by priority.

All the algorithms given in this paper, except the pre�x sum algorithm, are randomized.

Every processor, in addition to the operations allowed by the deterministic version of the

model, is also capable of making independent (n-sided) coin
ips. Our stated resource bounds

will hold for the worst case input with overwhelming probability.

1.5 Contents of this Paper

Our main contributions in this paper are:

1) an optimal parallel algorithm for INTEGER SORT. This algorithm uses

n= log n processors and sorts n integer keys in time eO(log n), and
2) sub-logarithmic time algorithms for GENERAL SORT and INTEGER SORT.

GENERAL SORT algorithm employs n(log n)� (for any � > 0) processors and IN-

TEGER SORT algorithm employs n(log logn)2

logn
processors. Both these algorithms

run in time eO � logn
log logn

�
.

The problem of optimal parallel sorting of n integers in the range [nO(1)] still remains

an open problem. Our sub-logarithmic time algorithm for GENERAL SORT is optimal as

implied by a recent result of Alon and Azar [2].

In our sub-logarithmic time sorting algorithms we reduce the problem of sorting to the

problem of pre�x sum computation. We show in this paper that pre�x sum can be computed

in time O(log n= log log(P log n=n)) using P � n= log n processors. We also present a sub-

logarithmic time algorithm for computing a random permutation of n given elements with

a run time of eO(log n= log log n) using n(log log n)2= log n processors.

Some of the results of this paper appeared in preliminary form in [22], but are substan-

tially simpli�ed in this manuscript. In section 2 we present some relevant preliminary results.

Section 3 contains our optimal INTEGER SORT algorithm. In section 4 we describe our

sub-logarithmic time algorithms.

5

2 Preliminary Results

2.1 Pre�x Circuits

Let � be a domain and let � be an associative operation that takes O(1) sequential time

over this domain. The pre�x computation problem is de�ned as follows.

� input (X(1);X(2); : : : ;X(n)) 2 �n

� output (X(1); X(1) �X(2); : : : ; X(1) �X(2) � : : : �X(n)).

The special case of pre�x computation when � is the set of all natural numbers and � is
integer addition is called pre�x sum computation. Ladner and Fischer [18] show that pre�x

computation can be done by a circuit of depth O(log n) and size n. The processor bound of

this algorithm can be improved as follows.

Lemma 2.1 Pre�x computation can be done in time O(log n) using n= log n PRAM proces-

sors.

Proof. Given X(1);X(2); : : : ;X(n), each one of the n= log n processors gets log n succes-

sive keys. Every processor sequentially computes the pre�x sum of the log n keys given

to it in log n time. Let S(i) be the sum of all the log n keys given to processor i (for

i = 1; : : : ; n= log n). Then, n= log n processors collectively compute the pre�x sum of

S(1); S(2); : : : ; S(n= log n), using Ladner and Fischer[18]'s algorithm. Using this pre�x sum,

each processor sequentially computes log n pre�xes of the original input sequence. 2

The above idea of processor improvement was originally used by Brent in his algorithm

for expression evaluation, and hence we attribute lemma 2.1 to him. Recently Cole and

Vishkin [9] have proved the following

Lemma 2.2 Pre�x sum computation of n integers (O(log n) bits each) can be performed in

O(log n= log log n) time using n log log n= log n CRCW PRAM processors.

2.2 An Assignment Problem

Given a set Q = f1; 2; : : : ; ng of n indices. Each index belongs to exactly one of m groups

G1; G2; : : : ; Gm. Let gi stand for the number of indices belonging to group Gi; i = 1; : : : ;m.

Given a sequence N(1); N(2); : : : ; N(m) where
Pm

i=1N(i) = O(n) and N(i) is an upper

bound for gi; i = 1; 2; : : : ;m. The problem is to �nd in parallel a permutation of (1; 2; : : : ; n)

6

in which all the indices belonging to G1 appear �rst, all the indices belonging to G2 appear

next, and so on. (Assume that given an index i, the group G{0 that i belongs to can be found

in O(1) time).

As an example, if n = 5; m = 2; G1 = f2; 5g; G2 = f1; 3; 4g; then (5; 2; 1; 3; 4) and

(2; 5; 3; 1; 4) are (two of the) valid answers.

Lemma 2.3 The above assignment problem can be solved in eO(log n) parallel time using

n= log n PRAM processors.

Proof. We present an algorithm. We use a shared memory of size 2
Pm

i=1N(i) (= L, say).

This memory is divided into m blocks B1; B2; : : : ; Bm the size of Bi being 2N(i). A unique

assignment for the indices belonging to Gi will be found in the block Bi, for i = 1; 2; : : : ;m.

Each one of the P (= n= log n) processors is given log n successive indices. Precisely,

processor � is given the indices (� � 1) log n + 1; (� � 1) log n + 2; : : : ; � log n, for � =

1; 2; : : : ; P . There are three phases of the algorithm. In the �rst phase boundaries of the

m blocks are computed. In the second phase every processor sequentially �nds unique

assignments for the log n indices given to it in their respective blocks. In the third phase, a

pre�x sum computation is done to eliminate the unused cells and the position of each index

in the output is read. Details follow.

step1

P processors collectively do a pre�x sum of (N(1); N(2); : : : ; N(m))

and hence compute the boundaries of blocks in the common memory.

step2

Each processor � is given a total time of d log n (d being a constant to

be �xed) to �nd assignments for all its indices sequentially.

� starts with its �rst index (call it) l. If Gl0 is the group that l belongs

to, � chooses a random cell in Bl0 and tries to write its id in it. If the

chosen cell did not contain the id of any other processor and � succeeds

in writing, then that cell is assigned to l. The probability of success

in one trial is � 1=2. If � has failed in this trial then it tries as many

times as it takes to �nd an assignment for l and then it takes up the

next index.

After d log n steps, even if there is a single processor that has not found

assignments for all its keys, the algorithm is aborted and started anew.

7

step3

Each processor � writes a 1 in the cells that have been assigned to

its indices. Unassigned cells in the common memory will have 0's. P

processors perform a pre�x sum computation on the contents of the

memory cells (1; 2; : : : ; L). Finally, every processor reads out from the

pre�x sum the position of each one of its indices in the output.

Analysis. Steps 1 and 3 can be completed in O(log n) time in accordance with lemma 2.1.

In step2, the probability that a particular processor � successfully �nds an assignment for

one of its keys in a single trial is � 1=2. Let Y be the random variable equal to the number

of successes of � in d log n trials.We require Y to be � log n for every processor. Clearly Y

is lower bounded by a binomial variable (see appendix A for de�nitions) with parameters

(d log n; 1=2). It follows from the Cherno� bounds (see appendix A, equation 3) that the

probability that there will be at least a single processor which has not found assignments for

all of its indices after d log n trials can be made � n�� for any � � 1, if we choose a proper

constant d.

Therefore the whole algorithm runs in time eO(log n). This completes the proof of lemma

2.3. 2

It should be mentioned here that when the number of groups, m, is 1 the above algorithm

outputs a random permutation of (1; 2; : : : ; n). An algorithm for this special case was given

by Miller and Reif [19].

2.3 Some Known Results

We state here the existence of optimal sequential algorithms for INTEGER SORT and op-

timal parallel algorithms for GENERAL SORT.

Lemma 2.4 Stable INTEGER SORT of n keys can be done in time O(n) by a deterministic

sequential RAM [1].

Lemma 2.5 GENERAL SORT of n keys can be performed in time O(log n) using n PRAM

processors ([4] and [8]).

3 An Optimal INTEGER SORT Algorithm

In this section we present an optimal algorithm for INTEGER SORT. This algorithm em-

ploys n= log n processors and runs in time eO(log n).
8

3.1 Summary of the Algorithm

The main idea behind our algorithm is radix sorting [15]. As an example of radix sorting,

consider the problem of sorting a sequence of two-bit decimal integers. One way of doing

this is to sort the sequence with respect the least signi�cant bits (LSB) of the keys and then

to sort the resultant sequence with respect to the most signi�cant bits (MSB) of the keys.

This will work provided, in the second sort keys with equal MSBs will remain in the same

relative order as they were in originally. In otherwords, the second sort should be stable.

Given a sequence of keys k1; k2; : : : ; kn 2 [n], where each key is a log n-bit integer. We

�rst (non-stable) sort this sequence with respect to the (log n � 3 log log n) LSBs of the

keys. (Call this sort Coarse Sort). In the resultant sequence we apply a stable sort with

respect to the 3 log log n MSBs of the keys. (Call this sort Fine Sort).

Even though the sequential time complexity of stable sort is no di�erent from that of

non-stable sort, it seems that parallel stable sort is inherently more complex than parallel

non-stable sort. This is the reason why we have divided the bits of the keys unevenly.

In Coarse Sort we need to (non-stable) sort a sequence of n keys, each key being in the

range [1; n= log3 n] and, in Fine Sort we have to (stable) sort n keys in the range [1; log3 n].

In terms of notations our algorithm can be summarized as follows.

Let D = n= log3 n and k0i = bki=Dc and k00i = ki � k0i �D for all i 2 [n].

Coarse Sort. Sort k001 ; k
00
2 ; : : : ; k

00
n 2 [D]. Let � be the resultant permutation.

Fine Sort. Stable-sort k0�(1); k
0
�(2); : : : ; k

0
�(n) 2 [log3 n]. Let � be the resultant permutation.

Output. The permutation �:�, the composition of � and �.

In sections 3.2 and 3.3 we describe Fine Sort and Coarse Sort respectively.

3.2 Fine Sort

We give a deterministic algorithm for Fine Sort. First we will show how to stable-sort n

keys in the range [log n] using n= log n processors in time O(log n) and then apply the idea

of radix sorting to prove that we can stable-sort n keys in the range [(log n)O(1)] within the

same resource bounds.

Lemma 3.1 n keys k1; k2; : : : ; kn 2 [log n] can be stable-sorted in O(log n) time using P =

n= log n processors.

Proof. In Fine Sort algorithm, each processor � is given log n successive keys. Each one of

the P processors starts by sequentially stable-sorting the keys given to it. Then, collectively,

the P processors group all the keys with equal values. (There are log n groups in all). Finally,

9

they output a rearrangement of the given sequence in which all the 1's (i.e., keys with a value

1) appear �rst, all the 2's appear next, and so on. Throughout the algorithm the relative

order of equal keys is preserved. More details follow.

To each processor � 2 [P] we assign the key indices J(�) = fjj(� � 1) log n < j �
min(n; � log n)g. There are three steps in the algorithm.

step1

Each processor � sequentially stable-sorts the keys fkj jj 2 J(�)g in

time O(log n) (see lemma 2.4), and hence constructs log n lists J�;k =

fj 2 J(�)jkj = kg for k 2 [log n]. Elements in J�;k are ordered in the

same relative order as in the input.

step2

The P processors collectively perform the pre�x sum of

(jJ1;1j; jJ2;1j; : : : ; jJP;1j;
jJ1;2j; jJ2;2j; : : : ; jJP;2j;
: : :

jJ1;qj; jJ2;qj; : : : ; jJP;qj)
where q = log n. Call this sum

(S1;1; S2;1; : : : ; SP;1,

S1;2; S2;2; : : : ; SP;2,

: : :

S1;q; S2;q; : : : ; SP;q).

10

step3

Each processor � sequentially computes the position of each one of its

keys in the output using the pre�x sum. The position of keys in the

list J�;l will be S��1;l + 1; S��1;l + 2; : : : ; S�;l.

Analysis. It is easy to see that steps 1 and 3 can be performed within the stated resource

bounds. Step 2 also can be completed within the stated resource bounds as stated in lemma

2.1. 2

Lemma 3.2 If n keys in the range [R] (for any R = nO(1)) can be stable-sorted in O(log n)

time using P = n=logn processors, then n keys k1; k2; : : : ; kn 2 [R2] can be stable-sorted in

time O(log n) using the same number of processors.

Proof. Let k0i = bki=Rc and k00i = ki�k0i �R for every i 2 [n]. First, stable-sort k001 ; k
00
2 ; : : : ; k

00
n

obtaining a permutation �. Then stable-sort k0�(1); k
0
�(2); : : : ; k

0
�(n) obtaining a permutation �.

Output �:�. Clearly both these sorts can be completed in time O(log n) using P processors.

2

Lemmas 3.1 and 3.2 immediately imply the following

Lemma 3.3 n integer keys in the range [(logn)O(1)] can be stable-sorted in time O(log n)

using n= log n processors.

3.3 Coarse Sort

In this sub-section we �x a key domain [D] where D = n= log3 n. We assume, w.l.o.g., log3 n

divides n. Let the input keys be k1; k2; : : : ; kn 2 [D]. De�ne the index sequence for each key

k 2 [D] to be I(k) = fijki = kg. The randomized algorithm for Coarse Sort to be presented

in this sub-section employs P = n= log n processors and runs in time eO(log n). The sorted
sequence is non-stable.

The main idea is to calculate the cardinalities of the index sequences I(k); k 2 [D]

approximately, and then to use the assignment algorithm of section 2.2 to rearrange the

given sequence in sorted order.

Lemma 3.4 Given as input k1; k2; : : : ; kn 2 [D] we can compute N(1); N(2); : : : ; N(D) ineO(log n) time using P = n= log n processors such that
P

k2[D]N(i) = O(n) and furthermore,

with very high likelihood N(k) � jI(k)j for each k 2 [D].

11

Proof. The following sampling algorithm serves as a proof.

step1

Each processor � 2 [D log n] in parallel chooses a random index s� 2
[n]. Let S be the sequence fs1; s2; : : : ; sD logng.

step2

The P processors collectively sort the keys with the chosen indices.

That is, they sort ks1 ; ks2 ; : : : ; ksD log n
and compute index sequences

IS(k) = fi 2 Sjki = kg (for each k 2 [D]).

step3

D of

the P processors in parallel set N(k) = d(log2 n) max(jIS(k)j; log n)
for k 2 [D], d being a constant to be �xed in the analysis. Output

N(1); N(2); : : : ; N(D).

Analysis. Trivially, steps 1 and 3 can be performed in O(1) time. Step 2 can be performed

using any of the optimal GENERAL SORT algorithms in O(log n) time (see lemma 2.5).

(Notice that we have to sort only n= log2 n keys in step2). It remains to be shown that

N(i)'s computed by the sampling algorithm satisfy the conditions in lemma 3.4.

If jI(k)j � d log3 n, then always N(k) � d log3 n � jI(k)j. So suppose jI(k)j > d log3 n.

Then it is easy to see that jIS(k)j is a binomial variable with parameters (n

log2 n
; jI(k)j

n
). The

Cherno� bounds (see appendix A, equation 2) imply that for all � � 1, there exists a c such

that

Prob.
�
jIS(k)j � c�jI(k)j= log2 n

�
� 1

n�
.

Therefore, if we choose d = (c�)�1 thenN(k) � jI(k)j (for every k 2 [D]) with probability

� 1� n��. The Cherno� bounds (equation 3) also imply that for all � � 1 there exists a h

such that N(k) � (h�)jI(k)j (for every k 2 [D]) with probability � 1 � n��.

The bound on
P

k2[D]N(k) clearly holds since

X
k2[D]

N(k) � X
k2[D]

d log2 n[jIS(k)j+ log n] = d log3 nD + d log2 n
X
k2[D]

jIS(k)j

= dn + d log2 nD log n = 2dn

12

This concludes the proof of lemma 3.4. 2

Having obtained the approximate cardinalities of the index sets, we apply the assignment

algorithm of section 2.2. The set Q is the set of key indices viz., f1; 2; : : : ; ng. An index i

belongs to group G{0 if the value of the key with index i is {0. Under this de�nition, group

Gj is the same as index sequence I(j); j = 1; 2; : : : ;D. Since we can �nd approximate

cardinalities of these groups (lemma 3.4), we can use the assignment algorithm of section 2.2

to rearrange the given sequence in sorted order. Thus we have the following

Lemma 3.5 n keys k1; k2; : : : ; kn 2 [D] can be sorted in time eO(log n) time using n= log n

processors.

Lemmas 3.3 and 3.5 together with the algorithm summary in section 3.1 prove the fol-

lowing

Theorem 3.1 INTEGER SORT of n keys can be performed in randomized eO(log n) time

using n= log n CRCW PRAM processors.

4 Sub-Logarithmic Time Algorithms

In the previous section we presented an optimal algorithm for INTEGER SORT. In this sec-

tion we will be presenting non-optimal sublogarithmic time algorithms for 1) pre�x sum com-

putation, 2) �nding a random permutation of n elements, 3) GENERAL SORT, and 4) IN-

TEGER SORT. Algorithms 3 and 4 are direct consequences of algorithms 1 and 2. Our pre-

�x algorithm employs P � n= log n processors and runs in time O(log n= log log(P log n=n)).

Algorithms 2,3, and 4 run in time eO(log n= log log n). GENERAL SORT uses n(log n)� pro-

cessors and algorithms 2 and 4 use n(log log n)2= log n processors.

4.1 A Sub-Logarithmic Pre�x Algorithm

Given a sequence of integers X(1);X(2); : : : ;X(n). We need to �nd the pre�x sum of this

sequence. This problem can be solved in sub-logarithmic time if we use more than n= log n

processors as is stated by the following

Lemma 4.1 Pre�x sum computation can be performed in time O(log n= log log(P log n=n))

using P � n= log n CRCW PRAM processors.

13

Proof. The algorithm can be summarized as follows. 1) Divide the given sequence into

blocks of d (to be determined later) successive keys; 2) sequentially compute pre�x sums in

each block; 3)apply pre�x to the �nal pre�xes in each block; and 4) compute pre�ces in each

block by using the result from 3 for the previous block.

More details follow. Let n1 = n=d.

step1

In O(d) time using n1 � P processors compute X 0(i;m); i 2 [n1];m 2
[d], where X 0(i;m) =

P(i�1)d+m
j=(i�1)d+1X(j).

step2

Compute the pre�x sum of the total sum of each part, i.e., compute

Y 0(1); Y 0(2); : : : ; Y 0(n1) where Y
0(i) =

Pi
j=1X(j; d), for i = 1; : : : ; n1.

step3

In time O(d), using n1 processors compute

(X 0(1; 1);X 0(1; 2); : : : ;X 0(1; d),

Y 0(1) �X 0(2; 1); Y 0(1) �X 0(2; 2); : : : ; Y 0(1) �X 0(2; d);

: : :

Y 0(n1 � 1) �X 0(n1; 1); Y
0(n1 � 1) �X 0(n1; 2); : : : ; Y

0(n1 � 1) �
X 0(n1; d)

which is the required output.

Analysis. Clearly, steps 1 and 3 can be performed with n1 processors in time O(d). It

remains to show that step 2 can be performed within the same time using P processors.

Let Cn;2 be a circuit of size n and in-degree 2 that computes the pre�x sum of n elements

in depth O(log n). Obtain an equivalent circuit Cn2;b of size n2 = n=b (n2 � n1) and in-degree

b in the obvious way (by collapsing sub-circuits of height log b into single nodes starting from

the bottom of the circuit [11]). We will simulate Cn2;b.

Each input key is a log n bit integer. Each one of the keys is divided into d parts each

comprising log n=d successive bits. The simulation proceeds in d stages. In the �rst stage,

we input the log n=d least signi�cant bits of the keys to the circuit Cn2;b. In the second stage,

we input the next most log n=d signi�cant bits of the input keys to the circuit. Similarly we

pipeline all the parts of the keys one part per stage. The computation in the circuit proceeds

in a pipeline fashion.

14

At any stage, every node v of Cn2;b has to compute the sum of b integers that arrive at

this node from its children and the carry it stored from the previous stage. v also has to

store the carry from this stage to be used in the next. Each one of these b integers and the

carry can be of at the most 2 log n=d = s bits. Therefore, the computation at v can be

made to run in time O(1) if we replace v by a constant depth circuit of size b2s(b+1). The

depth of Cn2;b is logb n2. Thus, the run time of the circuit (and hence the simulation time)

will be logb n2 + O(d). The size of the circuit is n2b2
s(b+1).

We require b2s(b+1) � P=n2; s = 2 log n=d; n1 = n=d; n1 � n2 and logb n2 = O(d). It is

easy to see that choosing s = log log(P log n=n) will satisfy all the above constraints. This

concludes the proof of lemma 4.1. 2

4.2 A Sub-Logarithmic Permutation Algorithm

The problem is to compute a random permutation of (1; 2; : : : ; n) in sub-logarithmic par-

allel time. The algorithm presented in this sub-section is very similar to the assignment

algorithm of section 2.2. It employs P = n(log log n)2= log n processors and runs in timeeO(log n= log log n).
A shared memory of size 2n is used. The main idea is to �nd unique assignments (in the

common memory) for each one of the indices i 2 [n] and then to eliminate unused cells of

common memory using a pre�x sum computation. Processors are partitioned into groups of

size (log log n)2. Each group of (log log n)2 processors gets log n successive indices. Detailed

algorithm follows.

step1

The log n indices given to each group of processors are partitioned into

groups of size (log log n)2. Step1 consists of log n=(log log n)2 phases. In

the ith phase (i = 1; 2; : : : ; log n=(log log n)2) each processor is given

a distinct index from the group i of indices. Each processor spends

d log log n time (for some constant d) to �nd an assignment for its

index (as explained in step2 of section 2.2). After d log log n time the

ith phase ends.

15

step2

P processors perform a pre�x sum computation to determine the num-

ber (call it N) of indices that do not have an assignment yet. Let

z = bP=Nc.

step3

A distinct group of z processors in parallel work to �nd an assignment

for every index j that remains without an assignment. A group suc-

ceeds even if a single processor in the group succeeds. Each group is

given C log n= log log n time (for some constant C).

After C log n= log log n time, even if a single index remains without an

assignment the whole algorithm is aborted and started anew.

(Grouping of processors in this step can easily be done using the pre�x

sum of step2).

step4

Finally, P processors perform a pre�x sum computation to eliminate

unused cells and read the positions of their indices in the output.

Analysis. Consider the ith phase of step1. The probability that a given processor � suc-

ceeds in �nding an assignment for its index in a single trial is � 1=2. Let Y be a random

variable equal to the number of processors failing in the jth trial of phase i. Then Y is

upperbounded by a binomial random variable with parameters (N j
i ; 1=2) (where N

j
i is the

number of processors that have not succeeded until the beginning of jth trial of phase i).

(Note N1
i = P). The Cherno� bounds (equation 3) imply that Y is at the most a constant

(< 1) fraction of N j
i with probability � 1 � 2��N

j

i (for some �xed � < 1). Therefore the

number of unsuccessful processors at the end of phase i is eO(P= log n). The number of keys
without assignments at the end of step1 is

Plogn=(log logn)2

i=1 Nd log logn
i . Using additive prop-

erty of binomial distributions and the Cherno� bounds we conclude that the number of keys

without assignments at the end of step1 is O(n= log n) (and hence z =
((log log n)2)) with

probability � 1� n�� for any � � 1.

Step2 runs in timeO(log n= log log n) (lemma 2.2). In step3, probability that a particular

group fails in one trial is � (1=2)
((log logn)
2). This implies that the probability that there is

at least one unsuccessful group at the end of step3 can be made � n��, for any � � 1, if we

choose a proper C.

16

Thus we conclude that the whole algorithm will run successfully in timeeO(log n= log log n). Clearly, this algorithm can also be used to solve the assignment pro-

belem of section 2.2. Thus we have the following

Lemma 4.2 The problem of computing a random permutation of n elements (and hence

the assignment problem of section 2.2) can be solved in time eO(log n= log log n) using P =

n(log log n)2= log n processors.

4.3 An Optimal Sub-Logarithmic GENERAL SORT Algorithm

Given as input k1; k2; : : : ; kn, Reischuk's algorithm [25] for GENERAL SORT samples
p
n

keys at random. If l1; l2; : : : ; lpn are the sampled keys in sorted order, these keys divide the

input keys into p � p
n + 1 collections S1; S2; : : : ; Sp where S1 = fqjq � l1g; Si = fqjli�1 <

q � lig for i = 2; 3; : : : ; (p � 1), and Sp = fqjq > kp�1g. With very high likelihood [25],

each one of these collections will be of size O(
p
n log n). (Reif and Valiant [24] give an

algorithm for sampling
p
n keys that will ensure that each one of these collections will be

of size O(
p
n).) Having identi�ed these collections, his algorithm sorts each one of them

recursively and merges the results trivially.

As such, [25]'s algorithm requires a computer of word length
(
p
n log n). This problem

can be circumvented using the assignment algorithm of section 2.2. Moreover such a modi�ed

algorithm can be made sub-logarithmic if n(log n)� processors are used. Detailed algorithm

follows.

procedure sublogGS(fk1; k2; : : : ; kng);

step1. If n is a constant sort trivially.

step2.
p
n processors in parallel each sample a random key.

step3. Sort the
p
n keys sampled in step2 by comparing every pair

of keys and computing the rank of each key. This can be done in

O(log n= log log n) time using n processors. Let the sorted sequence be

l1; l2; : : : ; lpn.

step4. Processors are partitioned into groups of size (log n)�. Each

group gets an index i 2 [n]. In parallel each group does a (log n)�-ary

search on l1; l2; : : : ; lpn to �nd out the collection Si0 that ki belongs to.

17

step5. n processors collectively compute N(1); N(2); : : : ; N(p) such

that
Pp

j=1N(j) = O(n) and N(j) � jSjj for evey j 2 [p]. (Recall

p � p
n+ 1).

step6. n processors use the sub-logarithmic assignment algorithm of

section 4.2 to rearrange k1; k2; : : : ; kn such that all the elements of S1

will appear �rst, all the elements of S2 will appear next, and so on.

step7. Recursively sort S1; S2; : : : ; Sp. Here O(
p
n(log n)�) proces-

sors work on each sub-problem. Finally output sublogGS(S1), : : : ,

sublogGS(Sp).

Analysis. If T 0(n) is the time sublogGS takes to sort n general keys, step1 and step2 take

O(1) time each. Step3, step4, and step6 take eO(log n= log log n) time each. Step7 takes time

T 0(c
p
n) (for some constant c) with probability � 1�n�� (for any � � 1). This is because no

collection will be of size more than O(
p
n) with the same probability (if we employ Reif and

Valiant [24]'s sampling algorithm). Computing N(1); N(2); : : : ; N(p) (step5) can be done in

time eO(log n= log log n) using n processors using a sampling algorithm very similar to the

one given in section 3.2. (details in appendix B). Therefore, the recurrence relation for T
0
(n),

the expected value of T 0(n) can be written as

T
0
(n) � T

0
(c
p
n) + eO(log n= log log n) + eO(n��) T 0

(n�p
n+ 1)

By induction we can show that T
0
(n) � eO(log n= log log n). Thus we have the following

Theorem 4.1 GENERAL SORT can be done in time eO(log n= log log n) with n(log n)�

CRCW PRAM processors.

4.4 A Sub-Logarithmic Algorithm for INTEGER SORT

In section 3, we presented an INTEGER SORT algorithm that used n= log n processors

to sort n integer keys in time eO(log n). The same algorithm can be used to sort in timeeO(log n= log log n) if the number of processors used is P = n(log log n)2= log n. We will

indicate here only the modi�cations needed to be made.

The P processors are partitioned into groups of size (log log n)2 and each group is given

log n successive indices. In Fine-Sort step1, each group of (log log n)2 processors stable

sorts the log n keys given to it using any of the parallel optimal stable GENERAL SORT

18

algorithms, in time O(log n= log log n). Step2 runs in time O(log n= log log n). In step3, each

group of processors computes the position of each one of its log n keys in the output using

the pre�x sum of step2. The time needed for step3 is log n=(log log n)2.

In Coarse-Sort, while computing the N(i)'s, steps 1 and 3 run in time O(1). In step2,

we need to sort n= log2 n keys. The sub-logarithmic algorithm of section 4.2 for GEN-

ERAL SORT can be used to run step2 in time eO(log n= log log n) using < n= log n proces-

sors. After computing N(i)'s, rearranging of the keys can be done using P processors in

time eO(log n= log log n) (lemma 4.2). Therefore, both Coarse-Sort and Fine-Sort run in timeeO(log n= log log n). Thus we have the following
Theorem 4.2 INTEGER SORT can be performed in eO(log n= log log n) time using P =

n(log log n)2= log n CRCW PRAM processors.

5 Conclusions

All the sorting algorithms appearing in this paper are non-stable. It remains an open prob-

lem to obtain stable versions of these algorithms. If we have a stable algorithm for INTE-

GER SORT then the de�nition of integer keys can be extended to include integers in the

range [nO(1)]. Any deterministic algorithm for INTEGER SORT using a polynomial number

of CRCW PRAM processors will take at least
(log n= log log n) time as has been shown by

Beam and Hastad [6]. However it is an open question whether there exists a randomized

CRCW PRAM algorithm that uses a polynomial number of processors and runs in time

o(log n= log log n).

A recent result of Alon and Azar [2] implies that our sub-logarithmic time GEN-

ERAL SORT algorithm is optimal. Their lower bound result is for a more powerful com-

parison tree model of Valiant and hence readily holds for PRAMs as well. Alon and Azar's

theorem is that if P is the number of processors used, then the average time, T , required

for sorting n elements by any randomized algorithm is �(log n= log(1 + P=n)) for P � n

and the average time is �(log n=(P=n)) for P � n. In particular, if P = n(log n)�, then

T = �(log n= log log n). It remains an open problem to prove or disprove the optimality of

our sublogarithmic INTEGER SORT algorithm.

Acknowledgements

The authors would like to thank Yijie Han, Sandeep Sen, and the referees for their insightful

comments.

19

References

[1] AHO, HOPCROFT AND ULLMAN, The Design and Analysis of Computer Algo-

rithms, Addison-Wesley, 1974.

[2] N. ALON AND Y. AZAR, The Average Complexity of Deterministic and Random-

ized Parallel Comparison Sorting Algorithms, Proc. IEEE Symposium on Foundations

of Computer Science, 1987, pp. 489-498.

[3] D. ANGLUIN AND L.G. VALIANT, Fast Probabilistic Algorithms for Hamiltonian

Paths and Matchings, J. Comp. Syst. Sci., 18 (1979), pp. 155-193.

[4] M. ATAI, J. KOML�OS AND E. SZEMER�EDI,An O(n log n) Sorting Network, Proc.

15th ACM Symposium on Theory of Computing, 1983, pp. 1-9.

[5] K. BATCHER, Sorting Networks and Their Applications, Spring Joint Computer

Conf. 32, AFIPS Press, Montvale, N.J., 1968, pp. 307-314.

[6] P. BEAM AND J. HASTAD, Optimal Bounds for Decision Problems on the CRCW

PRAM, 19th ACM Symposium on Theory Of Computing, 1987, pp. 83-93.

[7] H. CHERNOFF, A Measure of Asymptotic E�ciency for Tests of a Hypothesis

Based on the Sum of Observations, Annals of Math. Statistics 23, 1952, pp. 493-507.

[8] R. COLE, Parallel Merge Sort, Proc. 27th IEEE Symposium on Foundations of

Computer Science, 1986, pp. 511-516.

[9] R. COLE AND U. VISHKIN, Approximate and Exact Parallel Scheduling with

Applications to List, Tree, and Graph Problems, Proc. 27th IEEE Symposium on

Foundations of Computer Science, 1986, pp. 478-491.

[10] W. FELLER, An Introduction to Probability Theory and Its Applications, vol.1,

Wiley, New York, 1950.

[11] F.E. FICH, Two Problems in Concrete Complexity Cycle Detection and Parallel

Pre�x Computation, Ph.D. Thesis, Univ. of California, Berkeley,1982.

[12] W. HOEFFDING, On the Distribution of the Number of Successes in Independent

Trials, Annals of Math. Stat. 27, 1956, pp. 713-721.

20

[13] J.E. HOPCROFT AND R.E. TARJAN, E�cient Algorithms for Graph Manipu-

lation, Comm. ACM 16(6), 1973, pp. 372-378.

[14] N.J. JOHNSONAND S. KATZ,Discrete Distributions, Houghton Mi�n Company,

Boston, MA, 1969.

[15] D.E. KNUTH, The Art of Computer Programming, Vol.3: Sorting and Searching,

Addison-Wesley Publishing Company, Massachusetts, 1973.

[16] L. KUCERA, Parallel Computation and Con
icts in Memory Access, Information

Processing Letters 14(2), 1982, pp. 93-96.

[17] T. LEIGHTON, Tight Bounds on the Complexity of Parallel Sorting, 16th ACM

Symposium on Theory of Computing, Washington, D.C., 1984, pp. 71-80.

[18] R.E. LADNER AND M.J. FISCHER, Parallel Pre�x Computation, J. ACM 27(4),

1980, pp. 831-838.

[19] G.L. MILLER AND J.H. REIF, Parallel Tree Contraction and Its Application,

18th IEEE Symposium on Foundations of Computer Science, 1985, pp. 478-489.

[20] J.H. REIF, Symmetric Complementation, J. ACM, 31(2), 1984a, pp. 401-421.

[21] J.H. REIF, On the Power of Probabilistic Choice in Synchronous Parallel Compu-

tations, SIAM J. Computing 13(1), 1984b, pp. 46-56.

[22] J.H. REIF, An Optimal Parallel Algorithm for Integer Sorting, 18th IEEE Sym-

posium on Foundations of Computer Science, 1985, pp. 496-503.

[23] J.H. REIF AND J.D. TYGAR, E�cient Parallel Pseudo-Random Number Gen-

eration, CRYPTO'85, Santa Barbara, CA, Aug. 1985.

[24] J.H. REIF AND L.G. VALIANT, A Logarithmic Time Sort for Linear Size Net-

works, Proc. 15th ACM Symposium on Theory of Computing, 1983, pp. 10-16. Also

in JACM 34(1), 1987, pp. 60-76.

[25] R. REISCHUK, A Fast Probabilistic Sorting Algorithm, Proc. 22nd IEEE Sym-

posium on Foundations of Computer Science, 1981, pp.88-102.

[26] Y. SHILOACH AND U. VISHKIN, Finding the Maximum, Merging, and Sorting

in a Parallel Computation Model, J. Algorithms 2, 1981, pp.212-219.

21

[27] R.E. TARJAN, Depth First Search and Linear Graph Algorithms, SIAM J. of

Computing 1(2), 1972, pp.146-160.

[28] U. VISHKIN, Randomized Speed-Ups in Parallel Computation, Proc. of the 16th

Symp. on Theory of Computing, 1984, pp. 230-239.

22

APPENDIX A: Probabilistic Bounds

We say a random variable X upper bounds another random variable Y (equivalently, Y lower

bounds X) if for all x such that 0 � x � 1, Probability(X � x) � Probability(Y � x).

A Bernoulli trial is an experiment with two possible outcomes viz. success and failure.

The probability of success is p.

A binomial variable X with parameters (n; p) is the number of successes in n independent

Bernoulli trials, the probability of success in each trial being p.

The distribution function of X can easily be seen to be

Probability(X � x) =
xX

k=0

n

k

!
pn(1 � p)n�k :

[Cherno� 52] and [Angluin and Valiant 79] have found ways of approximating the tail

ends of a binomial distribution. In particular, they have shown that

Lemma A.1 If X is binomial with parameters (n; p), and m > np is an integer, then

Probability(X � m) �
�
np

m

�m
em�np: (1)

Also,

Probability(X � b(1� �)pnc) � exp(��2np=2) (2)

and

Probability(X � d(1 + �)npe) � exp(��2np=3) (3)

for all 0 < � < 1.

APPENDIX B: A Sampling Algorithm

Given an index set Q = f1; 2; : : : ; ng. Each index belongs to exactly one of
p
n groups

G1; G2; : : : ; Gp
n. For any index i, in constant time we can �nd out the group G{0 that i

belongs to.

Problem. To computeN(1); N(2); : : : ; N(
p
n) such that

Pp
n

i=1N(i) = O(n) and N(i) � jGij
for each i 2 [

p
n]. Given that each jGij � p

n log n.

Lemma B.1 The above problem can be solved in time eO(log n= log log n) using n processors.

Proof. We provide a sampling algorithm. A shared memory of size n is used. This shared

memory is divided into
p
n blocks B1; B2; : : : ; Bp

n each of size
p
n.

23

step1

n= log n processors in parallel each choose a random index (in [n]).

step2

Every processor � 2 [n= log n] has to �nd an assignment for its index

i in the block Bi0. It chooses a random cell in Bi0 and tries to write

in it. If it succeeds, it increments the contents of that cell by 1. If it

does not succeed in the �rst trial, it tries a second time to increment

the same cell. It tries as many times as it takes.

A total of h log n= log log n (for some h to be determined) time is given.

step3

n processors perform a pre�x sum computation on the contents of the

shared memory and hence compute L(1); L(2); : : : ; L(
p
n) where L(i)

is the sum of the contents of block Bi; i 2 [
p
n].

step4

p
n processors set in parallel N(i) = d(log n)max(1; L(i)) and output

N(i); i 2 [
p
n]. d is a constant to be determined.

Analysis. Let M(i); i 2 [
p
n] stand for the number of indices chosen in step1 that belong to

Gi and let R(i) = d(log n)max(1;M(i)). Following the proof of lemma 3.4, the R(i)'s satisfy

the conditions
Pp

n
i=1R(i) = O(n) and R(i) � jGij; i 2 [

p
n]. The proof will be complete if we

can show that L(i) =M(i) with very high probability.

Showing L(i) = M(i); i 2 [
p
n] is the same as showing that no cell in the commonmemory

will be chosen by more than h log n= log log n processors in step1. Let Y be a random variable

equal to the number of processors that have chosen a particular cell q. Following the proof

of lemma 3.4, no M(i) will be greater than c�
p
n with probability � 1� n�� for any � � 1

and some �xed c. Therefore, Y is upperbounded by a binomial variable with parameters

(c�
p
n; 1=

p
n). The Cherno� bounds (equation 1) imply that Y � h log n= log log n with

probability � 1� n��, for any � � 1 and a proper h. 2

24

