
Theoretically Efficient Parallel Graph Algorithms
Can Be Fast and Scalable

Laxman Dhulipala

Carnegie Mellon University

ldhulipa@cs.cmu.edu

Guy E. Blelloch

Carnegie Mellon University

guyb@cs.cmu.edu

Julian Shun

MIT CSAIL

jshun@mit.edu

ABSTRACT
There has been significant recent interest in parallel graph process-

ing due to the need to quickly analyze the large graphs available

today. Many graph codes have been designed for distributed mem-

ory or external memory. However, today even the largest publicly-

available real-world graph (the Hyperlink Web graph with over 3.5

billion vertices and 128 billion edges) can fit in the memory of a

single commodity multicore server. Nevertheless, most experimen-

tal work in the literature report results on much smaller graphs,

and the ones for the Hyperlink graph use distributed or external

memory. Therefore, it is natural to ask whether we can efficiently

solve a broad class of graph problems on this graph in memory.

This paper shows that theoretically-efficient parallel graph al-

gorithms can scale to the largest publicly-available graphs using a

single machine with a terabyte of RAM, processing them in min-

utes. We give implementations of theoretically-efficient parallel

algorithms for 13 important graph problems. We also present the

optimizations and techniques that we used in our implementations,

which were crucial in enabling us to process these large graphs

quickly. We show that the running times of our implementations

outperform existing state-of-the-art implementations on the largest

real-world graphs. For many of the problems that we consider,

this is the first time they have been solved on graphs at this scale.

We provide a publicly-available benchmark suite containing our

implementations.

ACM Reference Format:
Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically

Efficient Parallel Graph Algorithms Can Be Fast and Scalable. In SPAA
’18: 30th ACM Symposium on Parallelism in Algorithms and Architectures,
July 16–18, 2018, Vienna, Austria. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3210377.3210414

1 INTRODUCTION
Today, the largest publicly-available graph, the Hyperlink Web

graph, consists of over 3.5 billion vertices and 128 billion edges [61].

This graph presents a significant computational challenge for both

distributed and shared memory systems. Indeed, very few algo-

rithms have been applied to this graph, and those that have often

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’18, July 16–18, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5799-9/18/07. . . $15.00

https://doi.org/10.1145/3210377.3210414

take hours to run [26, 45, 54], with the fastest times requiring be-

tween 1–6 minutes using a supercomputer [84, 85]. In this paper,

we show that a wide range of fundamental graph problems can be

solved quickly on this graph, often in minutes, on a single commod-

ity shared-memory machine with a terabyte of RAM.
1
For example,

our k-core implementation takes under 3.5 minutes on 72 cores,

whereas Slota et al. [85] report a running time of about 6 minutes

for approximate k-core on a supercomputer with over 8000 cores.

They also report that they can identify the largest connected com-

ponent on this graph in 63 seconds, whereas we can identify all
connected components in 38.3 seconds. Another recent result by

Stergiou et al. [86] solves connectivity on the Hyperlink 2012 graph

in 341 seconds on a 1000 node cluster with 12000 cores and 128TB

of RAM. Compared to this result, our implementation is 8.9x faster

on a system with 128x less memory and 166x fewer cores. However,

we note that they are able to process a significantly larger private

graph that we would not be able to fit into our memory footprint.

A more complete comparison between our work and existing work,

including disk-based systems [26, 45, 54], is given in Section 6.

Importantly, all of our implementations have strong theoretical

bounds on their work and depth. There are several reasons that algo-

rithms with good theoretical guarantees are desirable. For one, they

are robust as even adversarially-chosen inputs will not cause them

to perform extremely poorly. Furthermore, they can be designed

on pen-and-paper by exploiting properties of the problem instead

of tailoring solutions to the particular dataset at hand. Theoretical

guarantees also make it likely that the algorithm will continue to

perform well even if the underlying data changes. Finally, careful

implementations of algorithms that are nearly work-efficient can

perform much less work in practice than work-inefficient algo-

rithms. This reduction in work often translates to faster running

times on the same number of cores [28]. We note that most running

times that have been reported in the literature on theHyperlinkWeb

graph use parallel algorithms that are not theoretically-efficient.

In this paper, we present implementations of parallel algorithms

with strong theoretical bounds on their work and depth for connec-

tivity, biconnectivity, strongly connected components, low-diameter

decomposition, maximal independent set, maximal matching, graph

coloring, single-source shortest paths, betweenness centrality, mini-

mum spanning forest, k-core decomposition, approximate set cover,

and triangle counting. We describe the techniques used to achieve

good performance on graphs with billions of vertices and hun-

dreds of billions of edges and share experimental results for the

Hyperlink 2012 and Hyperlink 2014 Web crawls, the largest and

second largest publicly-available graphs, as well as several smaller

real-world graphs at various scales. Some of the algorithms we

1
These machines are roughly the size of a workstation and can be easily rented in the

cloud (e.g., on Amazon EC2).

https://doi.org/10.1145/3210377.3210414
https://doi.org/10.1145/3210377.3210414

Problem (1) (72h) (SU) Algorithm Model Work Depth

Breadth-First Search (BFS) 649 10.7 60 – TS O (m) O (diam(G) logn)
Integral-Weight SSSP (weighted BFS) 3770 58.1 64 [28] PW O (m) expected O (diam(G) logn) w.h.p.†
General-Weight SSSP (Bellman-Ford) 4010 59.4 67 [25] PW O (diam(G)m) O (diam(G) logn)
Single-Source Betweenness Centrality (BC) 2260 37.1 60 [19] FA O (m) O (diam(G) logn)
Low-Diameter Decomposition (LDD) 1150 19.6 58 [63] TS O (m) expected O (log2 n) w.h.p.
Connectivity 2080 38.3 54 [79] TS O (m) expected O (log3 n) w.h.p.
Biconnectivity 9860 165 59 [87] FA O (m) expected O (max(diam(G) logn, log3 n)) w.h.p.
Strongly Connected Components (SCC)* 8130 185 43 [12] PW O (m logn) expected O (diam(G) logn) w.h.p.
Minimum Spanning Forest (MSF) 9520 187 50 [90] PW O (m logn) O (log2 n)
Maximal Independent Set (MIS) 2190 32.2 68 [11] FA O (m) expected O (log2 n) w.h.p.
Maximal Matching (MM) 7150 108 66 [11] PW O (m) expected O (log3m/log logm) w.h.p.

Graph Coloring 8920 158 56 [40] FA O (m) O (logn + L log∆)
k -core 8515 184 46 [28] FA O (m) expected O (ρ logn) w.h.p.
Approximate Set Cover 5630 98.4 57 [14] PW O (m) expected O (log3 n) w.h.p.
Triangle Counting (TC) — 1470 — [81] – O (m3/2) O (logn)

Table 1: Running times (in seconds) of our algorithms on the symmetrized Hyperlink2012 graph where (1) is the single-thread time, (72h)
is the 72-core time using hyper-threading, and (SU) is the parallel speedup. Theoretical bounds for the algorithms and the variant of the MT-
RAM used are shown in the last three columns. We mark times that did not finish in 5 hours with —. *SCC was run on the directed version of
the graph. †We say that an algorithm has O (f (n)) cost with high probability (w.h.p.) if it has O (k · f (n)) cost with probability at least 1 − 1/nk .

describe are based on previous results from Ligra, Ligra+, and Juli-

enne [28, 76, 80], and other papers on efficient parallel graph algo-

rithms [11, 40, 81]. However, most existing implementations were

changed significantly in order to be more memory efficient. Several

algorithm implementations for problems like strongly connected

components, minimum spanning forest, and biconnectivity are new,

and required implementation techniques to scale that we believe

are of independent interest. We also had to extend the compressed

representation from Ligra+ [80] to ensure that our graph primi-

tives for mapping, filtering, reducing and packing the neighbors

of a vertex were theoretically-efficient. We note that using com-

pression techniques is crucial for representing the symmetrized

Hyperlink 2012 graph in 1TB of RAM, as storing this graph in an

uncompressed format would require over 900GB to store the edges

alone, whereas the graph requires 330GB in our compressed format

(less than 1.5 bytes per edge). We show the running times of our

algorithms on the Hyperlink 2012 graph as well as their work and

depth bounds in Table 1. To make it easy to build upon or compare

to our work in the future, we describe a benchmark suite containing

our problems with clear I/O specifications, which we have made

publicly-available.
2

We present an experimental evaluation of all of our implementa-

tions, and in almost all cases, the numbers we report are faster than

any previous performance numbers for any machines, even much

larger supercomputers. We are also able to apply our algorithms

to the largest publicly-available graph, in many cases for the first

time in the literature, using a reasonably modest machine. Most

importantly, our implementations are based on reasonably simple

algorithms with strong bounds on their work and depth. We believe

that our implementations are likely to scale to larger graphs and

lead to efficient algorithms for related problems.

2 RELATEDWORK
Parallel Graph Algorithms. Parallel graph algorithms have re-

ceived significant attention since the start of parallel computing,

and many elegant algorithms with good theoretical bounds have

been developed over the decades (e.g., [3, 8, 21, 32, 44, 49, 53, 62–

64, 68, 69, 75, 87]). Amajor goal in parallel graph algorithm design is

to find work-efficient algorithms with polylogarithmic depth. While

many suspect that work-efficient algorithms may not exist for all

2
https://github.com/ldhulipala/gbbs

parallelizable graph problems, as inefficiency may be inevitable for

problems that depend on transitive closure, many problems that are

of practical importance do admit work-efficient algorithms [48]. For

these problems, which include connectivity, biconnectivity, mini-

mum spanning forest, maximal independent set, maximal matching,

and triangle counting, giving theoretically-efficient implementa-

tions that are simple and practical is important, as the amount of

parallelism available on modern systems is still modest enough

that reducing the amount of work done is critical for achieving

good performance. Aside from intellectual curiosity, investigating

whether theoretically-efficient graph algorithms also perform well

in practice is important, as theoretically-efficient algorithms are

less vulnerable to adversarial inputs than ad-hoc algorithms that

happen to work well in practice.

Unfortunately, some problems that are not known to admit work-

efficient parallel algorithms due to the transitive-closure bottle-

neck [48], such as strongly connected components (SCC) and single-

source shortest paths (SSSP) are still important in practice. One

method for circumventing the bottleneck is to give work-efficient

algorithms for these problems that run in depth proportional to the

diameter of the graph—as real-world graphs have low diameter, and

theoretical models of real-world graphs predict a logarithmic diame-

ter, these algorithms offer theoretical guarantees in practice [12, 72].

Other problems, like k-core are P-complete [4], which rules out

polylogarithmic-depth algorithms for them unless P = NC [38].

However, even k-core admits an algorithm with strong theoretical

guarantees that is efficient in practice [28].

Parallel Graph Processing Frameworks.Motivated by the need

to process very large graphs, there have been many graph process-

ing frameworks developed in the literature (e.g., [36, 52, 56, 65, 76]

among many others). We refer the reader to [59, 89] for surveys of

existing frameworks. Several recent graph processing systems eval-

uate the scalability of their implementations by solving problems

on massive graphs [26, 28, 45, 54, 84, 86]. All of these systems report

running times either on the Hyperlink 2012 graph or Hyperlink

2014 graphs, two web crawls released by the WebDataCommons

that are the largest and second largest publicly-available graphs

respectively. We describe these recent systems and give a detailed

comparison of how our implementations perform compare to their

codes in Section 6. We review existing parallel graph algorithm

benchmarks in the full version of our paper [29].

https://github.com/ldhulipala/gbbs

3 PRELIMINARIES
Graph Notation. We denote an unweighted graph by G(V ,E),
where V is the set of vertices and E is the set of edges in the graph.

Aweighted graph is denoted byG = (V ,E,w), wherew is a function

which maps an edge to a real value (its weight). The number of

vertices in a graph is n = |V |, and the number of edges ism = |E |.
Vertices are assumed to be indexed from 0 to n − 1. For undirected

graphs we use N (v) to denote the neighbors of vertex v and deg(v)
to denote its degree. For directed graphs, we use in-deg(v) and
out-deg(v) to denote the in and out-neighbors of a vertex v . We use

diam(G) to refer to the diameter of the graph, or the longest shortest

path distance between any vertex s and any vertexv reachable from

s . ∆ is used to denote the maximum degree of the graph. We assume

that there are no self-edges or duplicate edges in the graph. We refer

to graphs stored as a list of edges as being stored in the edgelist
format and the compressed-sparse column and compressed-sparse

row formats as CSC and CSR respectively.

Atomic Primitives. We use three common atomic primitives in

our algorithms: test-and-set (TS), fetch-and-add (FA), and priority-

write (PW). A test-and-set(&x) checks if x is 0, and if so atom-

ically sets it to 1 and returns true; otherwise it returns false. A
fetch-and-add(&x) atomically returns the current value of x and

then increments x . A priority-write(&x ,v,p) atomically com-

pares v with the current value of x using the priority function p,
and if v has higher priority than the value of x according to p it

sets x to v and returns true; otherwise it returns false.

Model. In the analysis of algorithms we use the following work-

depthmodel, which is closely related to the PRAM but better models

current machines and programming paradigms that are asynchro-

nous and allow dynamic forking. We can simulate the model on the

CRCWPRAMequippedwith the same operationswith an additional

O(log∗ n) factor in the depth due to load-balancing. Furthermore, a

PRAM algorithm using P processors and T time can be simulated

in our model with PT work and T depth.

TheMulti-Threaded Random-Access Machine (MT-RAM) [10] con-
sists of a set of threads that share an unbounded memory. Each

thread is basically equivalent to a Random Access Machine—it

works on a program stored in memory, has a constant number of

registers, and has standard RAM instructions (including an end to

finish the computation). The MT-RAM extends the RAM with a

fork instruction that takes a positive integer k and forks k new

child threads. Each child thread receives a unique integer in the

range [1, . . . ,k] in its first register and otherwise has the identical

state as the parent, which has a 0 in that register. They all start

by running the next instruction. When a thread performs a fork,
it is suspended until all the children terminate (execute an end
instruction). A computation starts with a single root thread and

finishes when that root thread ends. This model supports what is

often referred to as nested parallelism. If the root thread never does

a fork, it is a standard sequential program.

A computation can be viewed as a series-parallel DAG in which

each instruction is a vertex, sequential instructions are composed

in series, and the forked subthreads are composed in parallel. The

work of a computation is the number of vertices and the depth is

the length of the longest path in the DAG. We augment the model

with three atomic instructions that are used by our algorithms:

test-and-set (TS), fetch-and-add (FA), and priority-write (PW) and

discuss our model with these operations as the TS, FA, and PW

variants of the MT-RAM. As is standard with the RAM model,

we assume that the memory locations and registers have at most

O(logM) bits, whereM is the total size of the memory used. More

details about the model can be found in [10].

Parallel Primitives. The following parallel procedures are used

throughout the paper. Scan takes as input an arrayA of length n, an
associative binary operator ⊕, and an identity element ⊥ such that

⊥ ⊕ x = x for any x , and returns the array (⊥,⊥ ⊕A[0],⊥ ⊕A[0] ⊕
A[1], . . . ,⊥⊕n−2i=0 A[i]) as well as the overall sum, ⊥⊕n−1i=0 A[i]. Scan
can be done in O(n) work and O(logn) depth (assuming ⊕ takes

O(1) work) [44]. Reduce takes an array A and a binary associative

function f and returns the sum of the elements in A with respect

to f . Filter takes an array A and a predicate f and returns a new

array containing a ∈ A for which f (a) is true, in the same order as

in A. Reduce and filter can both be done in O(n) work and O(logn)
depth (assuming f takes O(1) work).

Ligra, Ligra+, and Julienne. We make use of the Ligra, Ligra+,

and Julienne frameworks for shared-memory graph processing in

this paper and review components from these frameworks here [28,

76, 80]. Ligra provides data structures for representing a graph

G = (V ,E), vertexSubsets (subsets of the vertices). We make use of

the edgeMap function provided by Ligra, which we use for mapping

over edges. edgeMap takes as input a graphG(V ,E), a vertexSubset
U , and two boolean functions F andC . edgeMap applies F to (u,v) ∈
E such thatu ∈ U andC(v) = true (call this subset of edges Ea), and
returns a vertexSubset U ′

where u ∈ U ′
if and only if (u,v) ∈ Ea

and F (u,v) = true. F can side-effect data structures associated with

the vertices. edgeMap runs in O(
∑
u ∈U deg(u)) work and O(logn)

depth assuming F and C take O(1) work. edgeMap either applies

a sparse or dense method based on the number of edges incident

to the current frontier. Both methods run in O(
∑
u ∈U deg(u)) work

and O(logn) depth. We note that in our experiments we use an

optimized version of the dense method which examines in-edges

sequentially and stops once C returns false. This optimization lets

us potentially examine significantly fewer edges than the O(logn)
depth version, but at the cost of O(in-deg(v)) depth.

4 ALGORITHMS
In this section we describe I/O specifications of our benchmark, dis-

cuss related work and present the theoretically-efficient algorithm

we implemented for each problem. We cite the original papers that

our algorithms are based on in Table 1. We mark implementations

based on prior work with a † and discuss the related work, algo-

rithms, and implementations for these problems in the full version

of our paper [29]. The full version also contains self-contained

descriptions of all of our algorithms.

Shortest Path Problems†

Problem: Breadth-First Search (BFS)

Input: G = (V ,E), an unweighted graph, src ∈ V .

Output:D, a mapping whereD[v] is the shortest path distance from
src to v in G and∞ if v is unreachable.

Problem: Integral-Weight SSSP (weighted BFS)

Input:G = (V ,E,w), a weighted graph with integral edge weights,

src ∈ V .

Output:D, a mapping whereD[v] is the shortest path distance from
src to v in G and∞ if v is unreachable.

Problem: General-Weight SSSP (Bellman-Ford)

Input: G = (V ,E,w), a weighted graph, src ∈ V .

Output:D, a mapping whereD[v] is the shortest path distance from
src to v in G and∞ if v is unreachable. All distances must be −∞

if G contains a negative-weight cycle reachable from src.

Problem: Single-Source Betweenness Centrality (BC)

Input: G = (V ,E), an undirected graph, src ∈ V .

Output: S , a mapping from each vertex v to the centrality contribu-

tion from all (src, t) shortest paths that pass through v .

Low-Diameter Decomposition†

Input: G = (V ,E), a directed graph, 0 < β < 1.

Output: L, a mapping from each vertex to a cluster ID representing

a (O(β),O((logn)/β)) decomposition. A (β ,d)-decomposition par-

titions V into V1, . . . ,Vk such that the shortest path between two

vertices inVi using only vertices inVi is at most d , and the number

of edges (u,v) where u ∈ Vi ,v ∈ Vj , j , i is at most βm.

Connectivity†

Input: G = (V ,E), an undirected graph.

Output: L, a mapping from each vertex to a unique label for its

connected component.

Biconnectivity

Input: G = (V ,E), an undirected graph.

Output: L, a mapping from each edge to the label of its biconnected

component.

Sequentially, biconnectivity can be solved using theHopcroft-Tarjan

algorithm [42]. The algorithm uses depth-first search (DFS) to iden-

tify articulation points and requires O(m + n) work to label all

edges with their biconnectivity label. It is possible to parallelize

the sequential algorithm using a parallel DFS, however, the fastest

parallel DFS algorithm is not work-efficient [2]. Tarjan and Vishkin

present the first work-efficient algorithm for biconnectivity [87]

(as stated in the paper the algorithm is not work-efficient, but it

can be made so by using a work-efficient connectivity algorithm).

Another approach relies on the fact that biconnected graphs admit

open ear decompositions to solve biconnectivity efficiently [57, 70].

In this paper, we implement the Tarjan-Vishkin algorithm for bi-

connectivity inO(m)work andO(max(diam(G) logn, log3 n)) depth
on the FA-MT-RAM. Our implementation first computes connectiv-

ity labels using the algorithm from Section 4, which runs in O(m)

work and O(log3 n) depth w.h.p. and picks an arbitrary source ver-

tex from each component. Next, we compute a spanning forest

rooted at these sources using breadth-first search, which runs in

O(m) work and O(diam(G) logn) depth. We note that the connec-

tivity algorithm can be modified to compute a spanning forest in

the same work and depth as connectivity, which would avoid the

breadth-first-search. We compute Low, High, and Size for each ver-

tex by running leaffix and rootfix sums on the spanning forests

produced by BFS with fetch-and-add, which requires O(n) work

and O(diam(G)) depth. Finally, we compute an implicit represen-

tation of the biconnectivity labels for each edge, using an idea

from [7]. This step computes per-vertex labels by removing all criti-

cal edges and computing connectivity on the remaining graph. The

resulting vertex labels can be used to assign biconnectivity labels

to edges by giving tree edges the connectivity label of the vertex

further from the root in the tree, and assigning non-tree edges the

label of either endpoint. Summing the cost of each step, the total

work of this algorithm is O(m) in expectation and the total depth

is O(max(diam(G) logn, log3 n)) w.h.p.

Minimum Spanning Forest

Input: G = (V ,E,w), a weighted graph.

Output: T , a set of edges representing a minimum spanning forest

of G.

Borůvka gave the first known sequential and parallel algorithm

for computing a minimum spanning forest (MSF) [18]. Significant

effort has gone into finding linear-work MSF algorithms both in

the sequential and parallel settings [21, 47, 68]. Unfortunately, the

linear-work parallel algorithms are highly involved and do not

seem to be practical. Significant effort has also gone into designing

practical parallel algorithms for MSF; we discuss relevant experi-

mental work in Section 6. Due to the simplicity of Borůvka, many

parallel implementations of MSF use variants of it.

In this paper, we present an implementation of Borůvka’s algo-

rithm that runs in O(m logn) work and O(log2 n) depth on the

PW-MT-RAM. Our implementation is based on a recent implemen-

tation of Borůvka by Zhou [90] that runs on the edgelist format. We

made several changes to the algorithm which improve performance

and allow us to solve MSF on graphs stored in the CSR/CSC for-

mat, as storing an integer-weighted graph in edgelist format would

require well over 1TB of memory to represent the edges in the

Hyperlink2012 graph alone. Our code uses an implementation of

Borůvka that works over an edgelist; to make it efficient we ensure

that the size of the lists passed to it are much smaller thanm. Our

approach is to perform a constant number of filtering steps. Each

filtering step solves an approximate k’th smallest problem in order

to extract the lightest 3n/2 edges in the graph (or all remaining

edges) and runs Borůvka on this subset of edges. We then filter the

remaining graph, packing out any edges that are now in the same

component. This idea is similar to the theoretically-efficient algo-

rithm of Cole et al. [21], except that instead of randomly sampling

edges, we select a linear number of the lowest weight edges. Each

filtering step costs O(m) work and O(logm) depth, but as we only

perform a constant number of steps, they do not affect the work and

depth asymptotically. In practice, most of the edges are removed

after 3–4 filtering steps, and so the remaining edges can be copied

into an edgelist and solved in a single Borůvka step. We also note

that as the edges are initially represented in both directions, we can

pack out the edges so that each undirected edge is only inspected

once (we noticed that earlier edgelist-based implementations stored

undirected edges in both directions).

Strongly Connected Components

Input: G(V ,E), a directed graph.

Output: L, a mapping from each vertex to the label of its strongly-

connected component.

Tarjan’s algorithm is the textbook sequential algorithm for com-

puting the strongly connected components (SCCs) of a directed

graph [25]. As it uses depth-first search, we currently do not know

how to efficiently parallelize it [2]. The current theoretical state-of-

the-art for parallel SCC algorithms with polylogarithmic depth re-

duces the problem to computing the transitive closure of the graph.

This requires Õ(n3) work using combinatorial algorithms [35],

which is significantly higher than theO(m+n)work done by sequen-
tial algorithms. As the transitive-closure based approach performs

a significant amount of work even for moderately sized graphs,

subsequent research on parallel SCC algorithms has focused on im-

proving the work while potentially sacrificing depth [12, 24, 34, 72].

Conceptually, these algorithms first pick a random pivot and use a

reachability-oracle to identify the SCC containing the pivot. They

then remove this SCC, which partitions the remaining graph into

several disjoint pieces, and recurse on the pieces.

In this paper, we present the first implementation of the SCC

algorithm from Blelloch et al. [12]. Our implementation runs in

in O(m logn) expected work and O(diam(G) logn) depth w.h.p. on

the PW-MT-RAM. One of the challenges in implementing this SCC

algorithm is how to compute reachability information frommultiple

vertices simultaneously and how to combine the information to (1)

identify SCCs and (2) refine the subproblems of visited vertices. In

our implementation, we explicitly store RF and RB , the forward

and backward reachability sets for the set of centers that are active

in the current phase, CA. The sets are represented as hash tables

that store tuples of vertices and center IDs, (u, ci), representing a
vertex u in the same subproblem as ci that is visited by a directed

path from ci . We explain how to make the hash table technique

practical in Section 5. The reachability sets are computed by running

simultaneous breadth-first searches from all active centers. In each

round of the BFS, we apply edgeMap to traverse all out-edges (or

in-edges) of the current frontier. When we visit an edge (u,v) we
try to add u’s center IDs to v . If u succeeds in adding any IDs, it

test-and-set’s a visited flag forv , and returns it in the next frontier if
the test-and-set succeeded. Each BFS requires at most O(diam(G))
rounds as each search adds the same labels on each round as it

would have had it run in isolation.

After computing RF and RB , we deterministically assign (with

respect to the random permutation of vertices generated at the start

of the algorithm) vertices that we visited in this phase a new label,

which is either the label of a refined subproblem or a unique label

for the SCC they are contained in. We first intersect the two tables

and perform, for any tuple (v, ci) contained in the intersection, a

priority-write with min on the memory location corresponding

to v’s SCC label with ci as the label. Next, for all pairs (v, ci) in
RF ⊕ RB we do a priority-write with min on v’s subproblem label,

which ensures that the highest priority search that visited v sets

its new subproblem.

We implemented an optimized search for the first phase, which

just runs two regular BFSs over the in-edges and out-edges from a

single pivot and stores the reachability information in bit-vectors

instead of hash-tables. It is well known that many directed real-

world graphs have a single massive strongly connected component,

and so with reasonable probability the first vertex in the permuta-

tion will find this giant component [20]. We also implemented a

‘trimming’ optimization that is reported in the literature [60, 83],

which eliminates trivial SCCs by removing any vertices that have

zero in- or out-degree. We implement a procedure that recursively

trims until no zero in- or out-degree vertices remain, or until a

maximum number of rounds are reached.

Maximal Independent Set and Maximal Matching

Problem: Maximal Independent Set

Input: G = (V ,E), an undirected graph.

Output: U ⊆ V , a set of vertices such that no two vertices inU are

neighbors and all vertices in V \U have a neighbor inU .

Problem: Maximal Matching

Input: G = (V ,E), an undirected graph.

Output: E ′ ⊆ E, a set of edges such that no two edges in E ′ share
an endpoint and all edges in E \ E ′ share an endpoint with some

edge in E ′.

Maximal independent set (MIS) and maximal matching (MM) are

easily solved in linear work sequentially using greedy algorithms.

Many efficient parallel maximal independent set and matching

algorithms have been developed over the years [3, 8, 11, 43, 49, 53].

Blelloch et al. show that when the vertices (or edges) are processed

in a random order, the sequential greedy algorithms for MIS and

MM can be parallelized efficiently and give practical algorithms [11].

Recently, Fischer and Noever showed an improved depth bound for

this algorithm [33].

In this paper, we implement the rootset-based algorithm for

MIS from Blelloch et al. [11] which runs in O(m) expected work

and O(log2 n) depth w.h.p. on the FA-MT-RAM. To the best of our

knowledge this is the first implementation of the rootset-based

algorithm; the implementations from [11] are based on processing

appropriately-sized prefixes of an order generated by a random

permutation P . Our implementation of the rootset-based algorithm

works on a priority-DAG defined by directing edges in the graph

from the higher-priority endpoint to the lower-priority endpoint.

On each round, we add all roots of the DAG into the MIS, compute

N (roots), the neighbors of the rootset that are still active, and finally
decrement the priorities of N (N (roots)). As the vertices in N (roots)
are at arbitrary depths in the priority-DAG, we only decrement

the priority along an edge (u,v), u ∈ N (roots) if P[u] < P[v]. The
algorithm runs in O(m) work as we process each edge once; the

depth bound is O(log2 n) as the priority-DAG has O(logn) depth
w.h.p. [33], and each round takesO(logn) depth. We were surprised

that this implementation usually outperforms the prefix-based im-

plementation from [11], while also being simple to implement.

Our maximal matching implementation is based on the prefix-

based algorithm from [11] that takes O(m) expected work and

O(log3m/log logm) depth w.h.p. on the PW-MT-RAM (using the

improved depth shown in [33]). We had to make several modifica-

tions to run the algorithm on the large graphs in our experiments.

The original code from [11] uses an edgelist representation, but we

cannot directly use this implementation as uncompressing all edges

would require a prohibitive amount of memory for large graphs. In-

stead, as in our MSF implementation, we simulate the prefix-based

approach by performing a constant number of filtering steps. Each

filter step packs out 3n/2 of the highest priority edges, randomly

permutes them, and then runs the edgelist based algorithm on the

prefix. After computing the new set of edges that are added to the

matching, we filter the remaining graph and remove all edges that

are incident to matched vertices. In practice, just 3–4 filtering steps

are sufficient to remove essentially all edges in the graph. The last

step uncompresses any remaining edges into an edgelist and runs

the prefix-based algorithm. The filtering steps can be done within

the work and depth bounds of the original algorithm.

Graph Coloring

Input: G = (V ,E), an undirected graph.

Output:C , a mapping from each vertex to a color such that for each

edge (u,v) ∈ E, C(u) , C(v), using at most ∆ + 1 colors.

As graph coloring is NP-hard to solve optimally, algorithms

like greedy coloring, which guarantees a (∆ + 1)-coloring, are

used instead in practice, and often use much fewer than (∆ + 1)

colors on real-world graphs [40, 88]. Jones and Plassmann (JP)

parallelize the greedy algorithm using linear work, but unfortu-

nately adversarial inputs exist for the heuristics they consider that

may force the algorithm to run in O(n) depth. Hasenplaugh et

al. introduce several heuristics that produce high-quality color-

ings in practice and also achieve provably low-depth regardless

of the input graph. These include LLF (largest-log-degree-first),

which processes vertices ordered by the log of their degree and SLL

(smallest-log-degree-last), which processes vertices by removing all

lowest log-degree vertices from the graph, coloring the remaining

graph, and finally coloring the removed vertices. For LLF, they show

that it runs in O(m + n) work and O(L log∆ + logn) depth, where
L = min{

√
m,∆} + log2 ∆ logn/log logn in expectation.

In this paper, we implement a synchronous version of Jones-

Plassmann using the LLF heuristic in Ligra, which runs in O(m +
n) work and O(L log∆ + logn) depth on the FA-MT-RAM. The

algorithm is implemented similarly to our rootset-based algorithm

for MIS. In each round, after coloring the roots we use a fetch-and-

add to decrement a count on our neighbors, and add the neighbor

as a root on the next round if the count is decremented to 0.

k-core

Input: G = (V ,E), an undirected graph.

Output: D, a mapping from each vertex to its coreness value.

k-cores were defined independently by Seidman [73], and byMatula

and Beck [58] who also gave a linear-time algorithm for computing

the coreness value of all vertices, i.e. the maximum k-core a ver-

tex participates in. Anderson and Mayr showed that k-core (and
therefore coreness) is in NC for k ≤ 2, but is P-complete for k ≥ 3

[4]. The Matula and Beck algorithm is simple and practical—it first

bucket-sorts vertices by their degree, and then repeatedly deletes

the minimum-degree vertex. The affected neighbors are moved to a

new bucket corresponding to their induced degree. As each edge in

each direction and vertex is processed exactly once, the algorithm

runs inO(m+n)work. In [28], the authors give a parallel algorithm

based on bucketing that runs inO(m+n) expected work, and ρ logn
depth w.h.p. ρ is the peeling-complexity of the graph, defined as

the number of rounds to peel the graph to an empty graph where

each peeling step removes all minimum degree vertices.

Our implementation of k-core in this paper is based on the im-

plementation from Julienne [28]. One of the challenges to imple-

menting the peeling algorithm for k-core is efficiently computing

the number of edges removed from each vertex that remains in the

graph. A simple approach is to just fetch-and-add a counter per

vertex, and update the bucket of the vertex based on this counter,

however this incurs significant contention on real-world graphs

with vertices with large degree. In order to make this step faster in

practice, we implemented a work-efficient histogram which com-

pute the number of edges removed from remaining vertices while

incurring very little contention. We describe our histogram imple-

mentation in Section 5.

Approximate Set Cover†

Input: G = (V ,E), an undirected graph representing a set cover

instance.

Output: S ⊆ V , a set of sets such that ∪s ∈sN (s) = V with |S | being
an O(logn)-approximation to the optimal cover.

Triangle Counting†

Input: G = (V ,E), an undirected graph.

Output: TG , the total number of triangles in G.

5 IMPLEMENTATIONS AND TECHNIQUES
In this section, we introduce several general implementation tech-

niques and optimizations that we use in our algorithms. Due to

lack of space, we describe some techniques, such as a more cache-

friendly sparse edgeMap that we call edgeMapBlocked, and com-

pression techniques in the full version of our paper [29].

A Work-efficient Histogram Implementation. Our initial im-

plementation of the peeling-based algorithm for k-core algorithm
suffered from poor performance due to a large amount of contention

incurred by fetch-and-adds on high-degree vertices. This occurs as

many social-networks and web-graphs have large maximum degree,

but relatively small degeneracy, or largest non-empty core (labeled

kmax in Table 2). For these graphs, we observed that many early

rounds, which process vertices with low coreness perform a large

number of fetch-and-adds on memory locations corresponding to

high-degree vertices, resulting in high contention [77]. To reduce

contention, we designed awork-efficient histogram implementation

that can perform this step while only incurringO(logn) contention
w.h.p. The Histogram primitive takes a sequence of (K, T) pairs,
and an associative and commutative operator R : T × T → T and

computes a sequence of (K, T) pairs, where each key k only appears

once, and its associated value t is the sum of all values associated

with keys k in the input, combined with respect to R.
A useful example of histogram to consider is summing for each

v ∈ N (F) for a vertexSubset F , the number of edges (u,v)whereu ∈

F (i.e., the number of incoming neighbors from the frontier). This

operation can be implemented by running histogram on a sequence

where each v ∈ N (F) appears once per (u,v) edge as a tuple (v, 1)
using the operator +. One theoretically efficient implementation of

histogram is to simply semisort the pairs using the work-efficient

semisort algorithm from [39]. The semisort places pairs from the

sequence into a set of heavy and light buckets, where heavy buckets
contain a single key that appears many times in the input sequence,

and light buckets contain at mostO(log2 n) distinct keys (k,v) keys,
each of which appear at mostO(logn) times w.h.p. (heavy and light

keys are determined by sampling). We compute the reduced value

for heavy buckets using a standard parallel reduction. For each light

bucket, we allocate a hash table, and hash the keys in the bucket

in parallel to the table, combining multiple values for the same

key using R. As each key appears at most O(logn) times w.h.p, we

incur at most O(logn) contention w.h.p. The output sequence can

be computed by compacting the light tables and heavy arrays.

While the semisort implementation is theoretically efficient, it

requires a likely cache miss for each key when inserting into the

appropriate hash table. To improve cache performance in this step,

we implemented a work-efficient algorithm withO(nϵ) depth based

on radix sort. Our implementation is based on the parallel radix sort

from PBBS [78]. As in the semisort, we first sample keys from the

sequence and determine the set of heavy-keys. Instead of directly

moving the elements into light and heavy buckets, we break up

the input sequence into O(n1−ϵ) blocks, each of size O(nϵ), and
sequentially sort the keys within a block into light and heavy buck-

ets. Within the blocks, we reduce all heavy keys into a single value

and compute an array of size O(nϵ) which holds the starting offset

of each bucket within the block. Next, we perform a segmented-

scan [9] over the arrays of the O(n1−ϵ) blocks to compute the sizes

of the light buckets, and the reduced values for the heavy-buckets,

which only contain a single key. Finally, we allocate tables for the

light buckets, hash the light keys in parallel over the blocks and

compact the light tables and heavy keys into the output array. Each

step runs in O(n) work and O(nϵ) depth. Compared to the original

semisort implementation, this version incurs fewer cache misses

because the light keys per block are already sorted and consecutive

keys likely go to the same hash table, which fits in cache. We com-

pared our times in the histogram-based version of k-core and the

fetch-and-add-based version of k-core and saw between a 1.1–3.1x

improvement from using the histogram.

Techniques for overlapping searches. In this section, we de-

scribe how we compute and update the reachability labels for ver-

tices that are visited in a phase of our SCC algorithm. Recall that

each phase performs a graph traversal from the set of active centers

on this round, CA, and computes for each center c , all vertices in
the weakly-connected component for the subproblem of c that can
be reached by a directed path from it. We store this reachability

information as a set of (u, ci) pairs in a hash-table, which represent

the fact that u can be reached by a directed path from ci . A phase

performs two graph traversals from the centers to compute RF and

RB , the out-reachability set and in-reachability sets respectively.

Each traversal allocates an initial hash table and runs rounds of

edgeMap until no new label information is added to the table.

The main challenge in implementing one round in the traversal

is (1) ensuring that the table has sufficient space to store all pairs

that will be added this round, and (2) efficiently iterating over all of

the pairs associated with a vertex. We implement (1) by performing

a parallel reduce to sum over vertices u ∈ F , the current frontier,
the number of neighbors v in the same subproblem, multiplied by

the number of distinct labels currently assigned to u. This upper-
bounds the number of distinct labels that could be added this round,

and although we may overestimate the number of actual additions,

we will never run out of space in the table. We update the number

of elements currently in the table during concurrent insertions by

storing a per-processor count which gets incremented whenever

the processor performs a successful insertion. The counts are then

summed together at the end of a round and used to update the

count of the number of elements in the table.

One simple implementation of (2) is to simply allocate O(logn)
space for every vertex, as the maximum number of centers that

visit any vertex during a phase is at most O(logn) w.h.p. However,
this will waste a significant amount of space, as most vertices are

visited just a few times. Instead, our implementation stores (u, c)
pairs in the table for visited vertices u, and computes hashes based

only on the ID of u. As each vertex is only expected to be visited

a constant number of times during a phase, the expected probe

length is still a constant. Storing the pairs for a vertex in the same

probe-sequence is helpful for two reasons. First, wemay incur fewer

cache misses than if we had hashed the pairs based on both entries,

as multiple pairs for a vertex can fit in the same cache line. Second,

storing the pairs for a vertex along the same probe sequence makes

it extremely easy to find all pairs associated with a vertex u, as we
simply perform linear-probing, reporting all pairs that have u as

their key until we hit an empty cell. Our experiments show that this

technique is practical, and we believe that it may have applications

in similar algorithms, such as computing least-element lists or FRT

trees in parallel [12, 13].

6 EXPERIMENTS
In this section, we describe our experimental results on a set of real-

world graphs and also discuss related experimental work. Tables 1

and 3 show the running times for our implementations on our graph

inputs. For compressed graphs, we use the compression schemes

from Ligra+ [80], whichwe extended to ensure theoretical efficiency.

We describe these modifications and also other statistics about our

algorithms (e.g., number of colors used, number of SCCs, etc.) in

the full version of the paper [29].

Experimental Setup. We run all of our experiments on a 72-core

Dell PowerEdge R930 (with two-way hyper-threading) with 4 ×

2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with a 4800MHz

bus and 45MB L3 cache) and 1TB of main memory. Our programs

use Cilk Plus to express parallelism and are compiled with the g++
compiler (version 5.4.1) with the -O3 flag. By using Cilk’s work-

stealing scheduler we are able obtain an expected running time

ofW /P +O(D) for an algorithm withW work and D depth on P
processors [16]. For the parallel experiments, we use the command

numactl -i all to balance the memory allocations across the

sockets. All of the speedup numbers we report are the running times

of our parallel implementation on 72-cores with hyper-threading

over the running time of the implementation on a single thread.

Graph Data. To show how our algorithms perform on graphs

at different scales, we selected a representative set of real-world

graphs of varying sizes. Most of the graphs are Web graphs and

social networks—low diameter graphs that are frequently used in

practice. To test our algorithms on large diameter graphs, we also

Graph Dataset Num. Vertices Num. Edges diam ρ kmax

LiveJournal 4,847,571 68,993,773 16 ∼ ∼

LiveJournal-Sym 4,847,571 85,702,474 20 3480 372

com-Orkut 3,072,627 234,370,166 9 5,667 253

Twitter 41,652,231 1,468,365,182 65* ∼ ∼

Twitter-Sym 41,652,231 2,405,026,092 23* 14,963 2488

3D-Torus 1,000,000,000 6,000,000,000 1500* 1 6

ClueWeb 978,408,098 42,574,107,469 821* ∼ ∼

ClueWeb-Sym 978,408,098 74,744,358,622 132* 106,819 4244

Hyperlink2014 1,724,573,718 64,422,807,961 793* ∼ ∼

Hyperlink2014-Sym 1,724,573,718 124,141,874,032 207* 58,711 4160

Hyperlink2012 3,563,602,789 128,736,914,167 5275* ∼ ∼

Hyperlink2012-Sym 3,563,602,789 225,840,663,232 331* 130,728 10565

Table 2: Graph inputs, including vertices and edges. diam is the di-
ameter of the graph. For undirected graphs, ρ and kmax are the num-
ber of peeling rounds, and the largest non-empty core (degeneracy).
We mark diam values where we are unable to calculate the exact di-
ameter with * and report the effective diameter observed during our
experiments, which is a lower bound on the actual diameter.

ran our implementations 3-dimensional tori where each vertex is

connected to its 2 neighbors in each dimension.

We list the graphs used in our experiments, along with their size,

approximate diameter, peeling complexity [28], and degeneracy

(for undirected graphs) in Table 2. LiveJournal is a directed graph

of the social network obtained from a snapshot in 2008 [17]. com-
Orkut is an undirected graph of the Orkut social network. Twitter
is a directed graph of the Twitter network, where edges represent

the follower relationship [51]. ClueWeb is a Web graph from the

Lemur project at CMU [17]. Hyperlink2012 and Hyperlink2014
are directed hyperlink graphs obtained from the WebDataCom-

mons dataset where nodes represent web pages [61]. 3D-Torus
is a 3-dimensional torus with 1B vertices and 6B edges. We mark

symmetric (undirected) versions of the directed graphs with the

suffix -Sym. We create weighted graphs for evaluating weighted

BFS, Borůvka, and Bellman-Ford by selecting edge weights between

[1, logn) uniformly at random. We process LiveJournal, com-Orkut,

Twitter, and 3D-Torus in the uncompressed format, and ClueWeb,

Hyperlink2014, and Hyperlink2012 in the compressed format.

SSSP Problems. Our BFS, weighted BFS, Bellman-Ford, and be-

tweenness centrality implementations achieve between a 8–67x

speedup across all inputs. We ran all of our shortest path experi-

ments on the symmetrized versions of the graph. Our experiments

show that our weighted BFS and Bellman-Ford implementations

perform as well as or better than our prior implementations from

Julienne [28]. Our running times for BFS and betweenness central-

ity are the same as the times of the implementations in Ligra [76].

We note that our running times for weighted BFS on the Hyper-

link graphs are larger than the times reported in Julienne. This

is because the shortest-path experiments in Julienne were run on

directed version of the graph, where the average vertex can reach

many fewer vertices than on the symmetrized version. We set a flag

for our weighted BFS experiments on the ClueWeb and Hyperlink

graphs that lets the algorithm switch to a dense edgeMap once the

frontiers are sufficiently dense, which lets the algorithm run within

half of the RAM on our machine. Before this change, our weighted

BFS implementation would request a large amount of amount of

memory when processing the largest frontiers which then caused

the graph to become partly evicted from the page cache.

In an earlier paper [28], we compared the running time of our

weighted BFS implementation to two existing parallel shortest path

implementations from the GAP benchmark suite [6] and Galois [55],

as well as a fast sequential shortest path algorithm from the DI-

MACS shortest path challenge, showing that our implementation

is between 1.07–1.1x slower than the ∆-stepping implementation

from GAP, and 1.6–3.4x faster than the Galois implementation. Our

old version of Bellman-Ford was between 1.2–3.9x slower than

weighted BFS; we note that after changing it to use the edgeMap-

Blocked optimization, it is now competitive with weighted BFS

and is between 1.2x faster and 1.7x slower on our graphs with the

exception of 3D-Torus, where it performs 7.3x slower than weighted

BFS, as it performs O(n4/3) work on this graph.

Connectivity Problems. Our low-diameter decomposition (LDD)

implementation achieves between 17–58x speedup across all inputs.

We fixed β to 0.2 in all of the codes that use LDD. The running

time of LDD is comparable to the cost of a BFS that visits most of

the vertices. We are not aware of any prior experimental work that

reports the running times for an LDD implementation.

Our work-efficient implementation of connectivity achieves 25–

57x speedup across all inputs. We note that our implementation

does not assume that vertex IDs in the graph are randomly per-

muted and always generates a random permutation, even on the

first round, as adding vertices based on their original IDs can result

in poor performance. There are several existing implementations of

fast parallel connectivity algorithms [67, 78, 79, 83], however, only

the implementation from [79], which presents the algorithm that

we implement in this paper, is theoretically-efficient. The imple-

mentation from Shun et al. was compared to both the Multistep [83]

and Patwary et al. [67] implementations, and shown to be com-

petitive on a broad set of graphs. We compared our connectivity

implementation to the work-efficient connectivity implementation

from Shun et al. on our uncompressed graphs and observed that

our code is between 1.2–2.1x faster in parallel.

Despite our biconnectivity implementation having O(diam(G))
depth, our implementation achieves between a 20–59x speedup

across all inputs, as the diameter of most of our graphs is extremely

low. Our biconnectivity implementation is about 3–5 times slower

than running connectivity on the graph, which seems reasonable

as our current implementation performs two calls to connectiv-

ity, and one breadth-first search. There are a several existing im-

plementations of biconnectivity. Cong and Bader [22] parallelize

the Tarjan-Vishkin algorithm and demonstrated speedup over the

Hopcroft-Tarjan (HT) algorithm. Edwards and Vishkin [31] also

implement the Tarjan-Vishkin algorithm using the XMT platform,

and show that their algorithm achieves good speedups. Slota and

Madduri [82] present a BFS-based biconnectivity implementation

which requires O(mn) work in the worst-case, but behaves like a

linear-work algorithm in practice. We ran the Slota and Madduri im-

plementation on 36 hyper-threads allocated from the same socket,

the configuration on which we observed the best performance for

their code, and found that our implementation is between 1.4–2.1x

faster than theirs. We used a DFS-ordered subgraph correspond-

ing to the largest connected component to test their code, which

produced the fastest times. Using the original order of the graph

affects the running time of their implementation, causing it to run

Application LiveJournal-Sym com-Orkut Twitter-Sym 3D-Torus ClueWeb-Sym Hyperlink2014-Sym

(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

Breadth-First Search (BFS) 0.59 0.018 32.7 0.41 0.012 34.1 5.45 0.137 39.7 301 5.53 54.4 106 2.29 46.2 250 4.50 55.5

Integral-Weight SSSP (weighted BFS) 1.45 0.107 13.5 2.03 0.095 21.3 33.4 0.995 33.5 437 18.1 24.1 736 14.4 51.1 1390 22.3 62.3

General-Weight SSSP (Bellman-Ford) 1.96 0.086 22.7 3.98 0.168 23.6 48.7 1.56 31.2 6280 133 47.2 1050 16.2 64.8 1460 22.9 63.7

Single-Source Betweenness Centrality (BC) 1.66 0.049 33.8 2.52 0.057 44.2 26.3 3.26 8.06 496 12.5 39.6 569 27.7 20.5 866 16.3 53.1

Low-Diameter Decomposition (LDD) 0.54 0.027 20.0 0.33 0.019 17.3 8.48 0.186 45.5 275 7.55 36.4 176 3.62 48.6 322 6.84 47.0

Connectivity 1.20 0.050 24.0 1.64 0.056 29.2 26.1 0.807 32.3 351 14.3 24.5 552 11.2 49.2 990 17.1 57.8

Biconnectivity 5.36 0.261 20.5 7.31 0.292 25.0 146 4.86 30.0 1610 59.6 27.0 2250 48.7 46.2 3520 71.5 49.2

Strongly Connected Components (SCC)* 1.61 0.116 13.8 ∼ ∼ ∼ 13.3 0.495 26.8 ∼ ∼ ∼ 1240 38.1 32.5 2140 51.5 41.5

Minimum Spanning Forest (MSF) 3.64 0.204 17.8 4.58 0.227 20.1 61.8 3.02 20.4 617 23.6 26.1 2490 45.6 54.6 3580 71.9 49.7

Maximal Independent Set (MIS) 1.18 0.034 34.7 2.23 0.052 42.8 34.4 0.759 45.3 236 4.44 53.1 551 8.44 65.2 1020 14.5 70.3

Maximal Matching (MM) 2.42 0.095 25.4 4.65 0.183 25.4 46.7 1.42 32.8 403 11.4 35.3 1760 31.8 55.3 2980 48.1 61.9

Graph Coloring 4.69 0.392 11.9 9.05 0.789 11.4 148 6.91 21.4 350 11.3 30.9 2050 49.8 41.1 3310 63.1 52.4

k -core 3.75 0.641 5.85 8.32 1.33 6.25 110 6.72 16.3 753 6.58 114.4 2370 62.9 37.6 3480 83.2 41.8

Approximate Set Cover 4.65 0.613 7.58 4.51 0.786 5.73 66.4 3.31 20.0 1429 40.2 35.5 1490 28.1 53.0 2040 37.6 54.2

Triangle Counting (TC) 13.5 0.342 39.4 78.1 1.19 65.6 1920 23.5 81.7 168 6.63 25.3 — 272 — — 568 —

Table 3: Running times (in seconds) of our algorithms over symmetric graph inputs on a 72-core machine (with hyper-threading) where (1) is
the single-thread time, (72h) is the 72 core time using hyper-threading, and (SU) is the parallel speedup (single-thread time divided by 72-core
time). We mark experiments that are not applicable for a graph with ∼, and experiments that did not finish within 5 hours with —. *SCC was
run on the directed versions of the input graphs.

between 2–3x slower as the amount of work performed by their

algorithm depends on the order in which vertices are visited.

Our strongly connected components implementation achieves

between a 13–43x speedup across all inputs. Our implementation

takes a parameter β , which is the base of the exponential rate at

which we grow the number of centers added. We set β between

1.1–2.0 for our experiments and note that using a larger value

of β can improve the running time on smaller graphs by up to a

factor of 2x. Our SCC implementation is between 1.6x faster to 4.8x

slower than running connectivity on the graph. There are several

existing SCC implementations that have been evaluated on real-

world directed graphs [41, 60, 83]. The Hong et al. algorithm [41] is

a modified version of the FWBW-Trim algorithm fromMcLendon et

al. [60], but neither algorithm has any theoretical bounds on work

or depth. Unfortunately [41] do not report running times, so we

are unable to compare our performance with them. The Multistep

algorithm [83] has a worst-case running time of O(n2), but the
authors point-out that the algorithm behaves like a linear-time

algorithm on real-world graphs. We ran our implementation on

16 cores configured similarly to their experiments and found that

we are about 1.7x slower on LiveJournal, which easily fits in cache,

and 1.2x faster on Twitter (scaled to account for a small difference

in graph sizes). While the multistep algorithm is slightly faster on

some graphs, our SCC implementation has the advantage of being

theoretically-efficient and performs a predictable amount of work.

Our minimum spanning forest implementation achieves between

17–50x speedup over the implementation running on a single thread

across all of our inputs. Obtaining practical parallel algorithms for

MSF has been a longstanding goal in the field, and several existing

implementations exist [5, 23, 66, 78, 90]. We compared our imple-

mentation with the union-find based MSF implementation from

PBBS [78] and the implementation of Borůvka from [90], which is

one of the fastest implementations we are aware of. Our MSF imple-

mentation is between 2.6–5.9x faster than the MSF implementation

from PBBS. Compared to the edgelist based implementation of

Borůvka from [90] our implementation is between 1.2–2.9x faster.

MIS, Maximal Matching, and Graph Coloring. Our MIS and

maximal matching implementations achieve between 31–70x and

25–70x speedup across all inputs. The implementations by Blel-

loch et al. [11] are the fastest existing implementations of MIS and

maximal matching that we are aware of, and are the basis for our

maximal matching implementation. They report that their imple-

mentations are 3–8x faster than Luby’s algorithm on 32 threads, and

outperform a sequential greedy MIS implementation on more than

2 processors. We compared our rootset-based MIS implementation

to the prefix-based implementation, and found that the rootset-

based approach is between 1.1–3.5x faster. Our maximal matching

implementation is between 3–4.2x faster than the implementation

from [11]. Our implementation of maximal matching can avoid

a significant amount of work, as each of the filter steps can ex-

tract and permute just the 3n/2 highest priority edges, whereas

the edgelist-based version in PBBS must permute all edges. Our

coloring implementation achieves between 11–56x speedup across

all inputs. We note that our implementation appears to be between

1.2–1.6x slower than the asynchronous implementation of JP in [40],

due to synchronizing on many rounds which contain few vertices.

k-core, Approximate Set Cover, and Triangle Counting. Our
k-core implementation achieves between 5–46x speedup across all

inputs, and 114x speedup on the 3D-Torus graph as there is only one

round of peeling in which all vertices are removed. There are several

recent papers that implement parallel algorithms for k-core [27,
28, 46, 71]. Both the ParK algorithm [27] and Kabir and Madduri

algorithm [46] implement the peeling algorithm in O(kmaxn +m)

work, which is not work-efficient. Our implementation is between

3.8–4.6x faster than ParK on a similar machine configuration. Kabir

and Madduri show that their implementation achieves an average

speedup of 2.8x over ParK. Our implementation is between 1.3–1.6x

faster than theirs on a similar machine configuration.

Our approximate set cover implementation achieves between

5–57x speedup across all inputs. Our implementation is based on

the implementation presented in Julienne [28]; the one major mod-

ification was to regenerate random priorities for sets that are active

on the current round. We compared the running time of our im-

plementation with the parallel implementation from [15] which is

available in the PBBS library. We ran both implementations with

ϵ = 0.01. Our implementation is between 1.2x slower to 1.5x faster

than the PBBS implementation on our graphs, with the exception

 100000 1x10
6

 1x10
7

 1x10
8

 1x10
9

n
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

number of vertices (logscale)

MIS
BFS
BC

Graph Coloring

Figure 1: Log-linear plot of normalized throughput vs. vertices for
MIS, BFS, BC, and coloring on the 3D-Torus graph family.

of 3D-Torus. On 3D-Torus, the implementation from [15] runs 56x

slower than our implementation as it does not regenerate priorities

for active sets on each round causing worst-case behavior. Our

performance is also slow on this graph, as nearly all of the vertices

stay active (in the highest bucket) during each round, and using

ϵ = 0.01 causes a large number of rounds to be performed.

Our triangle counting (TC) implementation achieves between 39–

81x speedup across all inputs. Unfortunately, we are unable to report

speedup numbers for TC on our larger graphs as the single-threaded

times took too long due to the algorithm performingO(m3/2) work.

There are a number experimental papers that consider multicore

triangle counting [1, 37, 50, 52, 74, 81]. We implement the algo-

rithm from [81], and adapted it to work on compressed graphs.

We note that in our experiments we intersect directed adjacency

lists sequentially, as there was sufficient parallelism in the outer

parallel-loop. There was no significant difference in running times

between our implementation and the implementation from [81].

We ran our implementation on 48 threads on the Twitter graph to

compare with the times reported by EmptyHeaded [1] and found

that our times are about the same.

Performance on 3D-Torus. We ran experiments on a family of

3D-Torus graphs with different sizes to study how our diameter-

bounded algorithms scale relative to algorithms with polylogarith-

mic depth. We were surprised to see that the running time of some

of our polylogarithmic depth algorithms on this graph, like LDD

and connectivity, are 17–40x more expensive than their running

time on Twitter and Twitter-Sym, despite 3D-Torus only having 4x

and 2.4x more edges than Twitter and Twitter-Sym. Our slightly

worse scaling on this graph can be accounted for by the fact that

we stored the graph ordered by dimension, instead of storing it

using a local ordering. It would be interesting to see how much

improvement we could gain by reordering the vertices.

In Figure 1 we show the normalized throughput of MIS, BFS,

BC, and graph coloring for 3-dimensional tori of different sizes,

where throughput is measured as the number of edges processed

per second. The throughput for each application becomes saturated

before our largest-scale graph for all applications except for BFS,

which is saturated on a graphwith 2 billion vertices. The throughput

curves show that the theoretical bounds are useful in predicting

how the half-lengths
3
are distributed. The half-lengths are ordered

3
The graph size when the system achieves half of its peak-performance.

Algorithm Cycles Stalled LLC Hit Rate LLC Misses BW Time

k -core (histogram) 9 0.223 49 96 62.9

k -core (fetch-and-add) 67 0.155 42 24 221

weighted BFS (blocked) 3.7 0.070 19 130 14.4

weighted BFS (unblocked) 5.6 0.047 29 152 25.2

Table 4: Cycles stalled while the memory subsystem has an out-
standing load (trillions), LLC hit rate and misses (billions), band-
width in GB/s (bytes read andwritten frommemory, divided by run-
ning time), and running time in seconds. All experiments are run on
the ClueWeb graph using 72 cores with hyper-threading.

as follows: coloring, MIS, BFS, and BC. This is the same order as

sorting these algorithms by their depth with respect to this graph.

Locality.While our algorithms are efficient on the MT-RAM, we

do not analyze their cache complexity, and in general they may not

be efficient in a model that takes caches into account. Despite this,

we observed that our algorithms have good cache performance on

the graphs we tested on. In this section we give some explanation

for this fact by showing that our primitives make good use of the

caches. Our algorithms are also aided by the fact that these graph

datasets often come in highly local orders (e.g., see the Natural
order in [30]). Table 4 shows metrics for our experiments measured

using Open Performance Counter Monitor (PCM).

Due to space limitations, we only report numbers for the ClueWeb

graph. We observed that using a work-efficient histogram is 3.5x

faster than using fetch-and-add in ourk-core implementation, which

suffers from high contention on this graph. Using a histogram

reduces the number of cycles stalled due to memory by more

than 7x. We also ran our wBFS implementation with and with-

out the edgeMapBlocked optimization, which reduces the number

of cache-lines read from and written to when performing a sparse

edgeMap. The blocked implementation reads and writes 2.1x fewer

bytes than the unoptimized version, which translates to a 1.7x faster

runtime. We disabled the dense optimization for this experiment to

directly compare the two implementations of a sparse edgeMap.

Processing Massive Web Graphs. In Tables 1 and 3, we show

the running times of our implementations on the ClueWeb, Hyper-

link2014, and Hyperlink2012 graphs. To put our performance in

context, we compare our 72-core running times to running times

reported by existing work. Table 5 summarizes the existing results

in the literature. Most results process the directed versions of these

graphs, which have about half as many edges as the symmetrized

version. Unless otherwise mentioned, all results from the literature

use the directed versions of these graphs. To make the compar-

ison easier we show our running times for BFS, SSSP (weighted

BFS), BC and SCC on the directed graphs, and running times for

Connectivity, k-core and TC on the symmetrized graphs in Table 5.

FlashGraph [26] reports disk-based running times for the Hy-

perlink2012 graph on a 4-socket, 32-core machine with 512GB of

memory and 15 SSDs. On 64 hyper-threads, they solve BFS in 208s,

BC in 595s, connected components in 461s, and triangle count-

ing in 7818s. Our BFS and BC implementations are 12x faster and

16x faster, and our triangle counting and connectivity implemen-

tations are 5.3x faster and 12x faster than their implementations,

respectively. Mosaic [54] report in-memory running times on the

Hyperlink2014 graph; we note that the system is optimized for

external memory execution. They solve BFS in 6.5s, connected com-

ponents in 700s, and SSSP (Bellman-Ford) in 8.6s on a machine with

Paper Problem Graph Memory Hyper-threads Nodes Time

Mosaic [54]

BFS* 2014 0.768 1000 1 6.55

Connectivity* 2014 0.768 1000 1 708

SSSP* 2014 0.768 1000 1 8.6

FlashGraph [26]

BFS* 2012 .512 64 1 208

BC* 2012 .512 64 1 595

Connectivity* 2012 .512 64 1 461

TC* 2012 .512 64 1 7818

BigSparse [45]

BFS* 2012 0.064 32 1 2500

BC* 2012 0.064 32 1 3100

Slota et al. [85]

Largest-CC* 2012 16.3 8192 256 63

Largest-SCC* 2012 16.3 8192 256 108

Approx k -core* 2012 16.3 8192 256 363

Stergiou et al. [86] Connectivity 2012 128 24000 1000 341

This paper

BFS* 2014 1 144 1 5.71

SSSP* 2014 1 144 1 9.08

BFS* 2012 1 144 1 16.7

BC* 2012 1 144 1 35.2

Connectivity 2012 1 144 1 38.3

SCC* 2012 1 144 1 185

k -core 2012 1 144 1 184

TC 2012 1 144 1 1470

Table 5: System configurations (memory in terabytes, hyper-
threads, and nodes) and running times (seconds) of existing results
on the Hyperlink graphs. The last section shows our running times.
*These problems are run on directed versions of the graph.

24 hyper-threads and 4 Xeon-Phis (244 cores with 4 threads each)

for a total of 1000 hyper-threads, 768GB of RAM, and 6 NVMes.

Our BFS and connectivity implementations are 1.1x and 40x faster

respectively, and our SSSP implementation is 1.05x slower. Both

FlashGraph and Mosaic compute weakly connected components,

which is equivalent to connectivity. BigSparse [45] report disk-

based running times for BFS and BC on the Hyperlink2012 graph

on a 32-core machine. They solve BFS in 2500s and BC in 3100s.

Our BFS and BC implementations are 149x and 88x faster than their

implementations, respectively.

Slota et al. [85] report running times for the Hyperlink2012 graph

on 256 nodes on the Blue Waters supercomputer. Each node con-

tains two 16-core processors with one thread each, for a total of

8192 hyper-threads. They report they can find the largest connected
component and SCC from the graph in 63s and 108s respectively.

Our implementations find all connected components 1.6x faster

than their largest connected component implementation, and find

all strongly connected components 1.6x slower than their largest-

SCC implementation. Their largest-SCC implementation computes

two BFSs from a randomly chosen vertex—one on the in-edges

and the other on the out-edges—and intersects the reachable sets.

We perform the same operation as one of the first steps of our

SCC algorithm and note that it requires about 30 seconds on our

machine. They solve approximate k-cores in 363s, where the ap-

proximate k-core of a vertex is the coreness of the vertex rounded
up to the nearest powers of 2. Our implementation computes the

exact coreness of each vertex in 184s, which is 1.9x faster than the

approximate implementation while using 113x fewer cores.

Stergiou et al. [86] describe a connectivity algorithm that runs

in O(logn) rounds in the BSP model and report running times

for the symmetrized Hyperlink2012 graph. They implement their

algorithm using a proprietary in-memory/secondary-storage graph

processing system used at Yahoo!, and run experiments on a 1000

node cluster. Each node contains two 6-core processors that are

2-way hyper-threaded and 128GB of RAM, for a total of 24000

hyper-threads and 128TB of RAM. Their fastest running time on

the Hyperlink2012 graph is 341s on their 1000 node system. Our

implementation solves connectivity on this graph in 38.3s–8.8x

faster on a system with 128x less memory and 166x fewer cores.

They also report running times for solving connectivity on a private

Yahoo! webgraph with 272 billion vertices and 5.9 trillion edges,

over 26 times the size of our largest graph. While such a graph

seems to currently be out of reach of our machine, we are hopeful

that techniques from theoretically-efficient parallel algorithms can

help solve problems on graphs at this scale and beyond.

7 CONCLUSION
In this paper, we showed that we can process the largest publicly-

available real-world graph on a single shared-memory server with

1TB of memory using theoretically-efficient parallel algorithms.

We outperform existing implementations on the largest real-world

graphs, and use much fewer resources than the distributed-memory

solutions. On a per-core basis, our numbers are significantly better.

Our results provide evidence that theoretically-efficient shared-

memory graph algorithms can be efficient and scalable in practice.

ACKNOWLEDGEMENTS
Thanks to the reviewers and to Lin Ma for helpful comments. This

work was supported in part by NSF grants CCF-1408940, CCF-

1533858, and CCF-1629444.

REFERENCES
[1] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. Emptyheaded:

A relational engine for graph processing. ACM Trans. Database Syst., 2017.
[2] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel depth-first search in general

directed graphs. In STOC, 1989.
[3] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm

for the maximal independent set problem. J. Algorithms, 1986.
[4] R. Anderson and E. W. Mayr. A P-complete problem and approximations to it.

Technical report, 1984.

[5] D. A. Bader and G. Cong. Fast shared-memory algorithms for computing the

minimum spanning forest of sparse graphs. JPDC, 2006.
[6] S. Beamer, K. Asanovic, and D. A. Patterson. The GAP benchmark suite. CoRR,

abs/1508.03619, 2015.

[7] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey,

and J. Shun. Implicit decomposition for write-efficient connectivity algorithms.

In IPDPS, 2018.
[8] M. Birn, V. Osipov, P. Sanders, C. Schulz, and N. Sitchinava. Efficient parallel and

external matching. In Euro-Par, 2013.
[9] G. E. Blelloch. Prefix sums and their applications. Synthesis of Parallel Algorithms,

1993.

[10] G. E. Blelloch and L. Dhulipala. Introduction to parallel algorithms 15-853:

Algorithms in the real world. 2018.

[11] G. E. Blelloch, J. T. Fineman, and J. Shun. Greedy sequential maximal independent

set and matching are parallel on average. In SPAA, 2012.
[12] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallelism in randomized incremental

algorithms. In SPAA, 2016.
[13] G. E. Blelloch, Y. Gu, and Y. Sun. A new efficient construction on probabilistic

tree embeddings. In ICALP, 2017.
[14] G. E. Blelloch, R. Peng, and K. Tangwongsan. Linear-work greedy parallel ap-

proximate set cover and variants. In SPAA, 2011.
[15] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and I/O efficient set

covering algorithms. In SPAA, 2012.
[16] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. J. ACM, 46(5), Sept. 1999.

[17] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In

WWW, 2004.

[18] O. Borůvka. O jistém problému minimálním. Práce Mor. Přírodověd. Spol. v Brně
III, 3, 1926.

[19] U. Brandes. A faster algorithm for betweenness centrality. Journal of mathemati-
cal sociology, 25(2), 2001.

[20] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,

A. Tomkins, and J. Wiener. Graph structure in the web. Computer networks,
33(1-6), 2000.

[21] R. Cole, P. N. Klein, and R. E. Tarjan. Finding minimum spanning forests in

logarithmic time and linear work using random sampling. In SPAA, 1996.
[22] G. Cong and D. A. Bader. An experimental study of parallel biconnected compo-

nents algorithms on symmetric multiprocessors (SMPs). In IPDPS, 2005.
[23] G. Cong and I. G. Tanase. Composable locality optimizations for accelerating

parallel forest computations. In HPCC, 2016.
[24] D. Coppersmith, L. Fleischer, B. Hendrickson, and A. Pinar. A divide-and-conquer

algorithm for identifying strongly connected components. 2003.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(3. ed.). MIT Press, 2009.

[26] D. M. Da Zheng, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay. Flashgraph:

Processing billion-node graphs on an array of commodity SSDs. In FAST, 2015.
[27] N. S. Dasari, R. Desh, and M. Zubair. ParK: An efficient algorithm for k -core

decomposition on multicore processors. In Big Data, 2014.
[28] L. Dhulipala, G. E. Blelloch, and J. Shun. Julienne: A framework for parallel graph

algorithms using work-efficient bucketing. In SPAA, 2017.
[29] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel graph

algorithms can be fast and scalable. CoRR, abs/1805.05208, 2018.
[30] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita. Com-

pressing graphs and indexes with recursive graph bisection. In KDD, 2016.
[31] J. A. Edwards andU. Vishkin. Better speedups using simpler parallel programming

for graph connectivity and biconnectivity. In PMAM, 2012.

[32] J. T. Fineman. Nearly work-efficient parallel algorithm for digraph reachability.

In STOC, 2018.
[33] M. Fischer and A. Noever. Tight analysis of parallel randomized greedy MIS. In

SODA, 2018.
[34] L. K. Fleischer, B. Hendrickson, and A. Pinar. On identifying strongly connected

components in parallel. In IPDPS, 2000.
[35] H. Gazit and G. L. Miller. An improved parallel algorithm that computes the BFS

numbering of a directed graph. Information Processing Letters, 28(2), 1988.
[36] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Dis-

tributed graph-parallel computation on natural graphs. In OSDI, 2012.
[37] O. Green, L. M. Munguia, and D. A. Bader. Load balanced clustering coefficients.

In PPAA, 2014.
[38] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation:

P-completeness Theory. Oxford University Press, Inc., 1995.

[39] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In SPAA,
2015.

[40] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson. Ordering heuristics

for parallel graph coloring. In SPAA, 2014.
[41] S. Hong, N. C. Rodia, and K. Olukotun. On fast parallel detection of strongly

connected components (SCC) in small-world graphs. In SC, 2013.
[42] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipu-

lation. Communications of the ACM, 1973.

[43] A. Israeli and Y. Shiloach. An improved parallel algorithm for maximal matching.

Inf. Process. Lett., 1986.
[44] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.

[45] S. W. Jun, A. Wright, S. Zhang, S. Xu, and Arvind. BigSparse: High-performance

external graph analytics. CoRR, abs/1710.07736, 2017.
[46] H. Kabir and K. Madduri. Parallel k-core decomposition on multicore platforms.

In IPDPSW, 2017.

[47] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm

to find minimum spanning trees. J. ACM, 42(2), Mar. 1995.

[48] R. M. Karp and V. Ramachandran. Handbook of theoretical computer science

(vol. a). chapter Parallel Algorithms for Shared-memory Machines. MIT Press,

Cambridge, MA, USA, 1990.

[49] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal indepen-

dent set problem. In STOC, 1984.
[50] J. Kim, W.-S. Han, S. Lee, K. Park, and H. Yu. OPT: A new framework for

overlapped and parallel triangulation in large-scale graphs. In SIGMOD, 2014.
[51] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a

news media? In WWW, 2010.

[52] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.

GraphLab: A new parallel framework for machine learning. In UAI, 2010.
[53] M. Luby. A simple parallel algorithm for the maximal independent set problem.

SIAM J. Comput., 1986.
[54] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim. Mosaic: Processing

a trillion-edge graph on a single machine. In EuroSys, 2017.
[55] S. Maleki, D. Nguyen, A. Lenharth, M. Garzarán, D. Padua, and K. Pingali. DSMR:

A parallel algorithm for single-source shortest path problem. In ICS, 2016.
[56] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski. Pregel: A system for large-scale graph processing. In SIGMOD,
2010.

[57] Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (EDS)

and st-numbering in graphs. Theoretical Computer Science, 47, 1986.

[58] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph

coloring algorithms. J. ACM, 30(3), July 1983.

[59] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: A survey of

vertex-centric frameworks for large-scale distributed graph processing. ACM
Comput. Surv., 48(2), Oct. 2015.

[60] W. Mclendon Iii, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger. Finding

strongly connected components in distributed graphs. Journal of Parallel and
Distributed Computing, 65(8), 2005.

[61] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. The graph structure in the

web–analyzed on different aggregation levels. The Journal of Web Science, 1(1),
2015.

[62] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest path algorithm. J.
Algorithms, 49(1), 2003.

[63] G. L. Miller, R. Peng, and S. C. Xu. Parallel graph decompositions using random

shifts. In SPAA, 2013.
[64] G. L. Miller and V. Ramachandran. A new graph triconnectivity algorithm and

its parallelization. Combinatorica, 12(1), Mar 1992.

[65] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph

analytics. In SOSP, 2013.
[66] S. Nobari, T.-T. Cao, P. Karras, and S. Bressan. Scalable parallel minimum spanning

forest computation. In PPoPP, 2012.
[67] M. Patwary, P. Refsnes, and F. Manne. Multi-core spanning forest algorithms

using the disjoint-set data structure. In IPDPS, 2012.
[68] S. Pettie and V. Ramachandran. A randomized time-work optimal parallel algo-

rithm for finding a minimum spanning forest. SIAM J. Comput., 31(6), 2002.
[69] V. Ramachandran. A framework for parallel graph algorithm design. In Optimal

Algorithms, 1989.
[70] V. Ramachandran. Parallel open ear decomposition with applications to graph

biconnectivity and triconnectivity. In Synthesis of Parallel Algorithms, 1993.
[71] A. E. Sariyuce, C. Seshadhri, and A. Pinar. Parallel local algorithms for core, truss,

and nucleus decompositions. CoRR, abs/1704.00386, 2017.
[72] W. Schudy. Finding strongly connected components in parallel usingO (log2 N)

reachability queries. In SPAA, 2008.
[73] S. B. Seidman. Network structure and minimum degree. Soc. Networks, 5(3), 1983.
[74] M. Sevenich, S. Hong, A. Welc, and H. Chafi. Fast in-memory triangle listing

for large real-world graphs. In Workshop on Social Network Mining and Analysis,
2014.

[75] Y. Shiloach and U. Vishkin. An O (logn) parallel connectivity algorithm. J.
Algorithms, 1982.

[76] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing framework for

shared memory. In PPoPP, 2013.
[77] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Reducing contention

through priority updates. In SPAA, 2013.
[78] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri,

and K. Tangwongsan. Brief announcement: the Problem Based Benchmark Suite.

In SPAA, 2012.
[79] J. Shun, L. Dhulipala, and G. E. Blelloch. A simple and practical linear-work

parallel algorithm for connectivity. In SPAA, 2014.
[80] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster: Parallel processing

of compressed graphs with Ligra+. In DCC, 2015.
[81] J. Shun and K. Tangwongsan. Multicore triangle computations without tuning.

In ICDE, 2015.
[82] G. M. Slota and K. Madduri. Simple parallel biconnectivity algorithms for multi-

core platforms. In HiPC, 2014.
[83] G. M. Slota, S. Rajamanickam, and K. Madduri. BFS and coloring-based parallel

algorithms for strongly connected components and related problems. In IPDPS,
2014.

[84] G. M. Slota, S. Rajamanickam, and K. Madduri. Supercomputing for Web Graph
Analytics. Apr 2015.

[85] G. M. Slota, S. Rajamanickam, and K. Madduri. A case study of complex graph

analysis in distributed memory: Implementation and optimization. In IPDPS,
2016.

[86] S. Stergiou, D. Rughwani, and K. Tsioutsiouliklis. Shortcutting label propagation

for distributed connected components. In WSDM, 2018.

[87] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM
Journal on Computing, 1985.

[88] D. J. Welsh and M. B. Powell. An upper bound for the chromatic number of a

graph and its application to timetabling problems. The Computer Journal, 1967.
[89] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big graph analytics platforms. Founda-

tions and Trends in Databases, 7, 2017.
[90] W. Zhou. A practical scalable shared-memory parallel algorithm for computing

minimum spanning trees. Master’s thesis, KIT, 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Algorithms
	5 Implementations and Techniques
	6 Experiments
	7 Conclusion
	References

