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Abstract
Over the past two decades, the explosive growth of the internet has triggered an

enormous increase in the size of natural graphs such as social networks and inter-
net link-structures. Processing and representing large natural graphs efficiently in
memory is thus crucial for a wide variety of applications. Our contributions are 1) A
parallel graph processing framework for representing compressed graphs with sig-
nificantly fewer bits per edge, and 2) A simple and practical expected linear-work,
polylogarithmic depth parallel algorithm for graph connectivity.

Real-world graphs tend to contain a large amount of locality - vertices within
a cluster mostly have edges to other vertices in their cluster. We discuss reorder-
ing techniques to make vertex labelings reflect locality inherent in the graph. We
introduce a framework supporting compressed representations of graph – Cogra –
based off of an earlier graph processing framework, Ligra, and show that algorithms
operating on compressed graphs in our framework are as fast, or faster than their
uncompressed counterparts. The Ligra and Cogra frameworks allow a user to easily
implement simple parallel graph algorithms.

In addition to designing simple algorithms, we would like them to be efficient
and have good theoretical guarantees. While most algorithms implemented in Ligra
and Cogra have good theoretical guarantees, the connected components algorithm
does not, and requires O((V + E)d) where d is the diameter. Addressing this
need and the lack of implementations of work-efficient connectivity algorithms, we
present a simple and practical work-efficient parallel algorithm for graph connec-
tivity that has a work of O(m) and depth O(log3(n)). The algorithm is based on
recently developed techniques for generating low-diameter graph decompositions in
parallel. We discuss implementing both the decomposition algorithm and our con-
nectivity algorithm in C++ using CILK+, and show that our connectivity algorithm
on 40 cores achieves 18–35 times self-relative speedup, and 10–25 times speedup
over the fastest sequential implementation.



iv



Acknowledgments
This work would not have been possible without the incredible amount of help

and mentoring provided by a number of people whom I would like to thank now.
Omissions appear to be inevitable, and I sincerely apologize to anyone I forget.

First and foremost, I wish to thank my advisor, Guy Blelloch for playing a crucial
role in my development as a student. Among many reasons, I wish to thank Guy
for teaching me his patient and thorough style when thinking about and analyzing
algorithms. I’ll always remember the levity that ensued from Guy’s remarks on
high-degree vertices in graphs.

Of no less importance, I would like to thank Julian Shun, without whom this
research would not have been possible. Among many other reasons, I am grateful to
Julian for being a wonderful mentor, model and friend.

I wish to thank the many faculty members and graduate students who spoke with
me and gave advice on my work. In particular, I would like to thank Gary Miller and
Shen Chen Xu for their valuable insight on low-diameter decompositions. Finally,
thank you to my family and friends, who endured the late-night musings of a student
debugging C.



Contents

1 Introduction 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Graph Compression 4
2.1 Locality and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Measures of Locality and Compression . . . . . . . . . . . . . . . . . . 6
2.2 Reordering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Traversal Based Orderings . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Graph-Partitioning Algorithms . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Difference Coding and k-bit Codes . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 A Compressed Graph Processing Framework 11
3.1 A Survey of Popular Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 The Ligra Graph Processing Framework . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Dense and Sparse Representations of Frontiers . . . . . . . . . . . . . . 14
3.2.2 The Need for Compression . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Supporting Compressed Representations . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Experiments and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.1 Reordering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 Performance and Memory Utilization . . . . . . . . . . . . . . . . . . . 23

4 Connectivity Labeling 28
4.1 Historical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Parallel Spanning-Forests . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Random-Mate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3 Work-Efficient Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Low-Diameter Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Extending Low-Diameter Decompositions to Connectivity . . . . . . . . . . . . 33

vi



5 Simple Work-Efficient Connectivity 35
5.1 A Simple Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Allowing Non-Determinism . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion 49

vii



Chapter 1

Introduction

Massive graphs are now found in almost every imaginable field. Whether mining data from
social-networks, or attempting to calculate relevancy scores over a link-graph from the Internet,
graphs are essential objects that must be maintained and manipulated efficiently in memory. In
recent decades, the growth of the Internet has spurred a massive increase in the size of graphs that
must be represented by applications. With some real-world graphs now having on the order of
a hundred billion edges, both industry and academic researchers are heavily invested in finding
ways to make algorithms perform well on these new graphs.

Progress in this area comes in many forms. One approach is to painstakingly optimize code
in order to produce an experimentally fast algorithm for a problem. Another approach is to
consider the problem algorithmically, and present an algorithm with better asymptotic work and
span which causes the code to become significantly more performant on large inputs. A major
focus of our work is the latter goal: to find deterministic work-efficient parallel algorithms that
are both experimentally fast on a variety of inputs and also supported by robust theory.

While we can extract significant performance gains by discovering new, asymptotically faster
algorithms for a problem, we can often speed up an entire suite of algorithms by improving the
runtime system on which the algorithm runs. Many modern graph algorithms that must be run
on massive real-world graphs are run in the distributed-memory setting, but recent work has
shown that shared memory machines are often sufficient for processing even the largest real-
world graphs. Compared to the distributed-memory setting, shared memory machines often
provide lower communication costs. If the graph in consideration can fit entirely into main
memory, algorithms running on shared memory architectures are often orders of magnitude faster
than their distributed memory counter-parts.

However, the explosive growth in graph sizes has posed a predicament for shared-memory
computing frameworks: if the graph in consideration cannot fit in main memory, then the per-
formance of an algorithm on the shared memory machine will suffer from paging and will al-
most certainly be slower than running the algorithm in a distributed memory framework. As
an example of a modern, real-world graph, the largest non-synthetic graph known to us is the
Yahoo graph, sporting 6.6 billion directed edges [59], which we symmetrize to obtain a larger
graph with 12.9 billion edges. While our machine with 256GB of main-memory can support this
machine, this graph occupies close to half of main-memory. With the sizes of web-graphs in-
creasing exponentially from year to year [21], finding a solution which allows these large graphs
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to be processed on a single machine, while not replacing the machine every few years is of great
interest.

One possible approach which solves the aforementioned problem while not requiring the user
to augment a machine with more memory every few years is to compress the web-graph. Various
compression schemes for graphs have emerged over the past few decades, ranging from some-
what impractical, but near-optimal schemes for compressing particular classes of graphs [24], to
compression schemes that provide efficient queries over the compressed data-structures [5]. We
are particularly interested in graph-compression that provides efficient access to the adjacency
list of a given vertex.

Another way of improving the performance of graph-algorithms that avoids retooling the
framework or hardware itself is to improve the algorithm. To this end, we focus on the Connec-
tivity Labeling problem, and develop theoretically sound, work-efficient but highly parallel and
performant algorithm. Given a graph, G = (V,E) the connectivity labeling problem is to output
a labeling L of the vertices in V such that vertices in the same partition have the same label.

We show that our connectivity labeling algorithm requires linear work and polylogarithmic
depth. We also experimentally show that it rivals, or often beats existing parallel implementations
of the connectivity labeling problem. One of the main issues we overcome is the dearth of
theoretical results regarding existing fast implementations of connectivity, which are typically
based off of locking and union-find, and are not theoretically work-efficient. We focused on the
connectivity labeling problem because of its conceptual simplicity, and relevance in a variety of
fields, ranging from VLSI design to image analysis for computer vision.

The contribution of this thesis is the development of a compressed graph processing frame-
work called Cogra, and a new linear work, polylogarithmic depth, work efficient connectivity
labeling algorithm. Chapter 2 introduces the problem of graph compression, and considers the
difficulties encountered when compressing large natural graphs. Chapter 3 discusses the current
state of graph processing frameworks, introduces our graph processing framework, Cogra, and
presents experimental results comparing Cogra to other frameworks. Chapter 4 introduces the
connectivity labeling problem, and discusses a number of historical approaches to connectivity
labeling. In Chapter 5 we present our connectivity labeling algorithm, and consider its exper-
imental performance on a suite of real-world graphs. Finally, in Chapter 6 we summarize our
results and conclude.
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1.1 Preliminaries
In this section, we introduce notation and definitions that will be used throughout the work. We
also describe the experimental setup used in both parts of the work, as well as a number of graphs
that we test our work upon.

We refer to a graph G = (V,E). If unspecified, G is assumed to be undirected. Graphs are
represented in the adjacency array format, where we maintain an array of edges, denoted E, as
well as an array of offsets into E, called V . Degrees are implicitly recovered from V , with the
degree for vertex i being calculated as V [i+1]−V [i]. V [n−1] is set to |E| to ensure correctness.

Our experiments were conducted on a 40-core Intel machine (with hyper-threading), with
4× 2.4GHz Intel 10-core E7-8870 Xeon processors (with a 1066MHz bus and 30MB L3 cache),
256GB of main memory, and hugepages of size 2MB enabled. We run all parallel experiments
with two-way hyper-threading enabled, for a total of 80 threads. The programs were compiled
with Intel’s icpc compiler (version 12.1.0) with the -O3 flag using CilkPlus [27] to express
parallelism. When running in parallel, we use the command numactl -i all to evenly
distribute the allocated memory among the processors’ caches. The times that we report are
based on a median of three trials.

Both the connectivity algorithms and compression framework were tested on a number of
graphs. We now describe graphs that are common to both works. Both experiments involved syn-
thetic graphs created using generators from the Problem Based Benchmark Suite (PBBS) [53].
These graphs include the rMat graph, randLocal graph, and 3D-grid graph. The rMat graph [14]
is a synthetic graph following the power-law degree distribution. The randLocal graph is a ran-
dom graph where each vertex has edges to five neighbors, chosen at random. The 3D-grid graph
is a grid graph where each vertex has 6 neighbors – two along each dimension. We note that the
initial orderings created by the graph generators have good locality.

Both works make use of an atomic compare-and-swap operation, supported on most modern
machines. The compare-and-swap function CAS(loc, oldV, newV) atomically checks if the value
at location loc is equal to oldV and if so it updates loc with newV and returns true. Otherwise it
leaves loc unmodified and returns false. We use the notation “&” to denote a pointer to a value.
For boolean values, we use the value 1 to refer to true and 0 to refer to false.

Unless otherwise specified our algorithms are assumed to be running on the CRCW PRAM
model.
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Chapter 2

Graph Compression

Work on graph compression has been ongoing in various forms since the early 1980’s. Turan [56]
showed how to succinctly representing planar graphs in O(n) bits, Naor [33] later improved
Turan’s result to include general unlabeled graphs, and gave a method that was optimal up to
constants in O(n). These initial results were not particularly interested in optimizing either the
compression algorithms, or the decompression process. Instead, they focused on achieving in-
formation theoretic lower bounds on the number of bits needed to represent a class of graphs
(for a class C, this is O(log(|C|)) bits to uniquely represent every c ∈ C). In general, for a
random graph on n vertices and m edges, we have an information theoretic lower bound of
θ(m log(n2/m)) [5]. While these approaches can be implemented, due to their focus on achiev-
ing information theoretic lower bounds, the results are mainly of theoretical interest.

Another approach is to use symbol-based methods, such as Huffman encoding. In symbol
techniques, the algorithm replaces symbols in the data being compressed with shorter symbols,
which will reduce the number of bits used if the data is not uniformly distributed over the input
alphabet. Dictionary techniques such as Lempel-Ziv [60] also replace input symbols with a
smaller set of output symbols. Typically, codes are prefix-free, i.e. no code-word is a prefix of
another code-word. A prefix-free code has a natural interpretation as a binary tree where code-
words reside at leaves of the tree, and the path to that leaf represents the code-word in binary.
Symbol-based methods, however, fail to exploit the structure of graphs, and are therefore not
particularly suited for compressing graphs.

With the explosive growth of the Internet in the early 21st century, both academics and re-
searchers in industry saw the need to implement fast algorithms that iterated over entire web-
graphs. In 2002, Randall [45] described the Link Database, which provides fast access to a
web-graph of hyperlinks. In order to represent a larger fraction of the original web-graph in
memory, they exploited the fact that in a web-graph most links are between nodes sharing the
same host-name. For example, examining a text dump of the http://www.cmu.eduwebsite,
and grepping for http://, nearly all of the links extend to other sub-domains residing under
cmu.edu.

This empirical observation about web-graphs has been the source of a significant amount of
research in the past decade. A few years after Randall’s description of the Link Database, Boldi
and Vigna [8] described the “webgraph framework”, which formalized a number of the intuitions
introduced by Randall, and other researchers such as Raghavan and Garcia-Molina [44]. We now
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adumbrate these two structural properties of web-graphs:
1. Locality: Links from a particular node extend mostly to other nodes in the same domain.

Concretely, we are more likely to observe links between nodes whose URL’s share a long
prefix [8].

2. Similarity: Consider a lexicographic ordering of the nodes (by URL). Nodes that are close
together in this ordering will have highly similar adjacency lists. An intuitive explanation
for this empirical observation is that many sites reuse the same navigational structure (be it
a sidebar, or header) and blindly copy the same structure onto a vast array of pages, which
leads to significant sharing between the adjacency lists of nearby vertices [8].

Boldi and Vigna exploit these properties in two interesting ways. First they use reference-
coding in order to exploit the similarity in web-graphs. They also use a technique called difference-
coding, which was introduced by Blandford and Blelloch [5] to compress adjacency lists. Com-
bining these techniques, their algorithm maintains a sliding-window over the vertices which
difference-codes links that are dissimilar from previous links of vertices in the sliding window.
If a run of links are identical to a run of links of another vertex, these links are compressed down
to an offset.

Ultimately, our techniques and approaches towards graph compression are based off of the
work of Blandford and Blelloch [5, 6]. Their approach is to first pre-process the graph into an
ordering which embodies locality inherent in the graph. They then apply the aforementioned
difference-coding technique in order to compress an adjacency list. We will describe these tech-
niques in more detail in the following section.

2.1 Locality and Compression

The primary factor limiting whether a given graph can be compressed in many modern compres-
sion frameworks is the locality present in the graph. This is an implicit quality of the graph that
can informally be conveyed by the following constraint. If (u, v) is an edge in our graph, then
the sets N(u) and N(v) are likely to be highly similar. Related to the inherent locality in a graph
is the ordering (labeling of vertices by numbers) in which the graph is presented. An ordering
which respects locality present in the graph will have the property that two vertices that share an
edge, say (u, v) will have labels that are close together.

Intuitively, we want the ordering to give vertices within the same cluster or component num-
bers that are close. Having a good ordering on the vertices provides us with a number perfor-
mance gains, which we now describe:

1. If we are operating in a distributed memory system where we have k machines, we will
typically place n/k distinct vertices onto each machine, i.e. the first n/k vertices go on
the first machine, the second n/k on the second machine, etc. If the ordering captures
the locality inherent in the graph, then we will minimize the amount of inter-node com-
munication happening in a large number of graph algorithms. For example, in traversal
type-algorithms that that write values from a frontier, to the frontier’s out-neighbors, hav-
ing an ordering which respects the locality of the graph will result in less communication
as most vertices being written to are likely reside on the same machine.
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2. Local orderings are also useful on shared-memory systems. Due to main-memory being
roughly on the order of the size of the graph for large graphs, algorithms iterating over a
vertex’s out-neighbors benefit from highly local orderings due to their out-neighbors often
lying on the same, or near-by cache-lines. For example, if the cache-line size is 64 bytes,
and we are writing into an array of 4-byte integers consisting of vertex data, and vertex u
has an out-neighbor to vertex u+2, then if the data for u is already cached, we will be able
to write to vertex u+ 2 for free.

Even if a graph has a high degree of locality, its original ordering may not adequately capture
this locality. We will see that one of the primary ways to generate a better compression ratio using
an algorithm is to simply improve the locality present in the graph’s ordering. Algorithms that
generate better orderings are known as reordering algorithms, and typically operate by generating
small vertex separators of a graph, and recursively partitioning the graph into smaller and smaller
pieces. The algorithm then assigns vertices in the same piece vertex numbers that are close
together.

2.1.1 Measures of Locality and Compression

Two useful statistics for measuring the degree of locality of an ordering are the average log cost,
and average log gap cost. The log cost of an edge (u, v) is log2(‖v − u‖), that is the logarithm
(base 2) of the absolute value of the difference between v and u. The average log cost of a graph
is the average log cost over all edges in the graph, i.e. (1/|E|)

∑
(u,v)∈E log2 |u− v|.

Another statistic which captures how well a graph compresses under a difference encoding
scheme is the average log gap cost. Given a graph, G = (V,E), let v ∈ V have adjacency list
Adj(v) = {v0, . . . , vdeg(v)−1} where vi ∈ Adj(v) appear in sorted order. The log gap cost of
an edge, (v, vi), is log2(‖vi − v‖) for i = 0, and log2(‖vi − vi−1‖) for i > 0. Furthermore, the
average log gap cost is simply the average log gap cost over all (u, v) ∈ E.

2.2 Reordering Algorithms

Suppose we are given a graph G, with some initial ordering on the vertices, which may or may
not respect the underlying locality in the graph. A reordering algorithm, AR takes G and pro-
duces a relabeled graph G′ such that under some compression scheme C, G′ requires less bits
per edge than G. We can further tighten our definition of reordering algorithms by borrowing
notation introduced by Boldi et al. [10]. They define a coordinate-free reordering algorithm as
an algorithm that obtains the same number of bits-per-edge with respect to C, given any initial
ordering of the vertices in G.

We can view compression-free algorithms as simply taking the original ordering of the ver-
tices in G, and applying a random permutation before starting the reordering. Furthermore, a
coordinate-free algorithm merely has the property that it only depends on the link-structure of
the graph, and not the latent similarity of two vertex numbers given in the original ordering. We
now describe a set of reordering algorithms that embody this property:
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2.2.1 Traversal Based Orderings
Given a graph G in a random ordering π, our goal is to now find an ordering π∗ that embodies
some of the locality inherent in the graph. Perhaps the simplest approach to extracting some of
the locality is to pick a v ∈ V at random, and run a breadth-first search. Vertices are assigned
labels as they are encountered in the search, with the initial vertex being labeled 0, and the final
vertex being labeled n− 1. We can also label the vertices using depth-first search.

In practice, both algorithms provide usable results, and do manage to capture some of the
input graph’s locality. However, theoretically, both algorithms suffer due to their inability to
perform well on particular types of graphs. BFS for example, suffers from graphs similar to
the one in Figure 2.1. Each layer is assigned contiguous vertex numbers, while a near-optimal
solution is found using DFS (each path is labeled contiguously). The DFS-solution is shown
using numbers. Similarly, DFS performs poorly on graphs which are similar to the grid-graph
in Figure 2.2. While BFS finds a solution that keeps each frontier of the graph starting from the
top-left corner labeled contiguously, DFS will only give local-numberings for 1/4 of the links,
as it simply produces a long path in the graph.

Figure 2.1: An input graph that results in a poor BFS-Ordering. Colors show the ordering pro-
duced by BFS, with each frontier having contiguous labels. The numbers show a possible order-
ing produced by DFS.

Figure 2.2: An input graph that results in a poor DFS-Ordering. Colors show the ordering
produced by BFS, with each frontier having contiguous labels. The numbers show a possible
ordering produced by DFS.

We also considered a hybrid-approach, which has the properties of both BFS and DFS. In
particular, we visit nodes in DFS order, but label children of each node with consecutive IDs
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before recursively calling the function on the children. Empirically, we observed this approach
to provide compression-ratios between those of BFS and DFS, as typically, either BFS or DFS
produced the best results on a given graph.

Lastly, Blandford et al. [5] proposed a recursive algorithm which uses traversals to compute
a separator. The algorithm first performs a breadth-first search from an arbitrary node, and finds
the furthest node from the starting node. Then, from this second node, the algorithm performs a
second breadth-first search until the search visits half of the vertices. The second search induces
an edge-cut of G, between which the vertices are partitioned. It then assigns the range [0, n/2) to
one half of the vertices, and [n/2, n) to the second half, and recursively applies the algorithm on
the induced subgraphs. In our experiments, we denote this algorithm (bfs-r), meaning recursive
breadth-first search.

2.2.2 Graph-Partitioning Algorithms
Historically, the best results for reordering algorithms have come from programs such as METIS [26],
which is used for graph-partitioning. Given a graph, G = (V,E), the graph-partitioning problem
is to partition V into p almost equal pieces such that we minimize the number of edges between
vertices in two different pieces. We will revisit this problem when discussing graph connectivity,
as fast, randomized solutions to this problem are essential for our approach to connectivity.

The output of a graph partitioning algorithm for p = 2 is a partition of V into two sets, V1 and
V2 which induces an edge-cut of the graph. As the graph-partitioning problem is NP-Complete
for general graphs, algorithms typically rely on heuristic approaches in order to construct good
partitions. Historically, approaches have been split into three categories: spectral approaches
(based on computing the eigenvector that corresponds to the second smallest eigenvalue), ge-
ometric approaches, which associate each vertex with a coordinate, and multilevel partitioning
algorithms, which recursively contract and uncontract the graph to recover a cut. The algorithms
we compare against fall into the latter category, and we will briefly touch on how they operate.

METIS [26] for example uses the following simple algorithm to compute a 2-partition of the
graph. They solve the general case of a k-partition by first computing a 2-partition, and then
recursively subdividing each of the two vertex sets into more pieces if necessary. The graph
is first coarsened into a sequence of graphs, G1, G2, . . . , Gj where |Vi| > |Vl| for i < l. This
process stops once the number of vertices is less than some constant threshold, at which point,
they compute a near-optimal bisection of this small graph. They then undergo j refinement
steps, one for each coarsened graph, where the bisection for Gi+1 is projected onto Gi, and
adjusted using a heuristic. The subtlety in METIS, and other recursive schemes is in the choice
of coarsening algorithm, and the choice of the refinement algorithm used in the uncoarsening
phase.

We also compare our schemes against Scotch [38] and PT-Scotch [15], a parallel version
of Scotch. Both frameworks operate on the same recursive bisection scheme as METIS. We
found that the compression quality of PT-Scotch to be very similar to METIS, and therefore only
provide experimental evaluation against METIS.

Lastly, the Problem Based Benchmark Suite (PBBS) [53] includes a recently developed par-
allel separator-based reordering algorithm, which we call p-sep. It is very similar in design to a
sequential algorithm designed by Blandford et al. [5]. The Blandford algorithm contracts along
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edges until a single vertex remains. They introduce the following metric for choosing which edge
to contract: w(EAB)/(s(A)s(B)) where w(EAB) is the weight of the edge between vertices A
and B and s(A) and s(B) are the weights of A and B, respectively.

The initial weights of all vertices and edges are all 1. As two vertices are contracted together,
the super-vertex is assigned a weight of s(A)+s(B). When a multi-edge results from contracting
two vertices, the new edge is assigned the sum of the weights of the previous edges. The vertex-
labeling is an in-order traversal of the leaves of the separator tree. The implementation in PBBS
produces a parallel algorithm which follows roughly the same idea. They extract parallelism
by ensuring that each vertex only participates in at most one contraction. For each vertex, they
choose an edge which maximizes the previously described metric, which induces a forest over
the original graph. They then apply a parallel maximal matching algorithm on the forest in order
to determine which edges are contracted.

2.3 Difference Coding and k-bit Codes
The difference encoding compression scheme takes a vertex, v andAdj(v) = {v0, v1, . . . , vdeg(v)−1}
whereAdj(v) is in increasing order, and encodes the differences, {v0−v1, v1−v0, . . . , vdeg(v)−1−
vdeg(v)−2}. Notice that the average log gap cost defined in section 2.1.1 captures the average log2
of the differences being encoded. We can encode these differences using a variety of codes.
Choosing a code forces us to make a trade off between the number of bits per link, and the ease
of decoding encoded values. We restrict our choice of codes to prefix-free logarithmic codes,
which we now describe.

A logarithmic code is a prefix code which uses O(log x) bits in order to represent a number,
x. Perhaps the best known logarithmic code is the gamma code [18], which represents an integer,
x as dlog2 xe in unary, followed by x − 2dlog2 xe in binary, using a total of 1 + 2blog2 xc bits.
Gamma codes are particularly useful when the size of the number being encoded is unknown.
However, unless the numbers being decoded are in a small range, decoding gamma codes is
often prohibitively expensive. For encoded numbers in a small enough range, the decoding can
be accelerated by using table look-up.

Blandford et. al [6] describe another class of codes, known as k-bit codes, which encode an
integer x as a series of k-bit blocks. Each block uses one bit as a continue bit, which indicates
if the following block is also a part of x’s encoded representation. To encode x, we first check if
x ≤ 2k−1. If this is the case, we simply write the binary representation of x into a single block,
and set the continue bit to 0. Otherwise, we write the binary code for x mod 2k−1 in the block,
set the continue bit to 1, and then encode bx/2k−1c in the subsequent blocks. Decoding works by
examining blocks until a block with a continue bit of 0 is found. If b blocks are examined, then
the decoded value in the i’th examined block is multiplied by 2(b−i)(k−1), and added to the result.

Figure 2.3: The value 89 encoded using byte-codes using 1 byte, or 8 bits
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Figure 2.4: The value 89 encoded using nibble-codes using 3 nibbles, or 12 bits

We use two types of k-bit codes in our experiments - byte-codes and nibble-codes, which
correspond to an 8-bit and 4-bit code respectively. Byte-codes are extremely fast to decode, as
compressed blocks lie on byte-aligned boundaries. Nibble-codes lie on 4-bit boundaries, require
more memory accesses and are slower to decode. 4-bit and even 2-bit codes often provide better
compression if most values being encoded lie off of bit boundaries that causes the code to use an
extra block to store very few bits (with respect to k).

Lastly, notice that in our difference encoding scheme, the first value we encode in an adja-
cency list may be negative, as v1 − v may be negative. Therefore, we store an extra sign bit for
the first value.
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Chapter 3

A Compressed Graph Processing
Framework

There are a large number of graph processing framework available today, ranging from frame-
works designed for distributed memory systems, to frameworks capable of processing massive
real-world graphs on a single commodity machine. Different frameworks also come packaged
with vastly different features, ranging from built-in machine learning algorithms, to functionality
for dynamically modifying the graph. Furthermore, frameworks differ vastly in the syntax and
semantics they impose on the programmer. We first describe the current state of graph processing
frameworks, identify areas of focus, and finally describe and evaluate Cogra, a compressed graph
processing framework for shared-memory.
Recent frameworks can be broken down into roughly the following categories:

1. Vertex-Centric Models: Frameworks using the vertex-centric model have the program-
mer write functions from the perspective of a vertex. Each vertex is allowed to iterate
over its edges, and write messages to its neighbors. Historically, these frameworks were
bulk-synchronous [20, 30, 48], but other frameworks such as GraphLab have introduced
asynchronous computation, which allows for fast machine learning algorithms on graphs.

2. Graph-Centric Models: Recently, a framework called Giraph++ [55] proposed a pro-
gramming model which exposes information about partitioning information to the appli-
cation programmer in order to take advantage of algorithm-specific optimizations. They
advocate this system due to the inability to implement these optimizations in vertex-centric
models such as GPS, Pregel, and the original Giraph framework. By exposing subgraph
information, a vertex can effectively ‘look past’ its neighbors, and pass information to all
vertices within its partition.

3. Matrix-vector and Matrix-Matrix Models: These frameworks provide primitives for
sparse matrix-matrix, and sparse matrix-vector computations. They include efficient im-
plementations of linear algebra primitives that then operate on graphs represented as ma-
trices. A notable example is the Combinatorial BLAS [13], which is sometimes used as a
backend for other frameworks such as the Knowledge Discovery Toolbox [29].

4. Domain-Specific Models: Ligra [51] is a recent lightweight framework supporting sim-
ple expression of algorithms based on graph traversals, such as Breadth First Search and
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PageRank. It can run these algorithms on the Yahoo graph, which is the largest publicly
available real-world graph in speeds that are orders of magnitude faster than speeds at-
tained from distributed-memory graph processing frameworks. Ligra can be broadly clas-
sified under the vertex-centric model category, but due to its specific focus on allowing for
the easy implementation traversal problems, we classify it as a domain-specific model.

3.1 A Survey of Popular Frameworks
Due to different frameworks often offering completely different features, we describe each frame-
work individually, and finally provide a general critique on the benefits and issues faced when
working in these popular frameworks.

The vast majority of graph frameworks in the past decade have been centered around either
distributed memory graph-processing, or MapReduce based models[25, 28, 29, 30, 48]. Pega-
sus [25] is a library designed for computing Petabyte scale graphs using the Hadoop implementa-
tion of MapReduce. As it is built on top of MapReduce, it is difficult to make it highly performant
due to the large amount of communication and inter-machine IO. Pegasus’ processing model is
based off of sparse and generalized matrix operations, but does not allow a sparse representation
of the vertices, and is thus inefficient when very few vertices are active.

The Knowledge Discovery Toolbox (KDT) [29] operates using sparse and generalized matrix
operations, and bases its core library off of the Combinatorial BLAS. Their framework allows
for both sparse vectors and sparse matrices, and can efficiently support only a small subset of
vertices being active during an algorithm. However, they do not currently support switching
between dense and sparse representations of a vertex set based on the set’s density.

Pregel [30] is a vertex-centric graph processing framework in the distributed setting. Func-
tions are written from the perspective of a vertex, which is able to iterate over its edges and send
messages to neighbors. The message passing is bulk-synchronous, making computed values only
appear in subsequent rounds. Due to operating on distributed memory machines, Pregel is not
highly performant. GPS [48] implements the Pregel interface and also supports graph partition-
ing and computation reallocation, but despite this only achieves a marginal speedup relative to
Pregel.

GraphLab [28] is an asynchronous framework for parallel graph processing, and supports
both shared-memory and distributed-memory machines. GraphLab’s vertex centric functions
can run at any time, as long as a set of specified consistency rules are obeyed. This makes the
framework particularly powerful for machine learning algorithms operating on graphs, such as
topic modeling. Both Pregel and GraphLab assume a single graph, with values stored at nodes -
a framework imposed limitation which ultimately restricts the types of applications expressable
by the framework.

Grappa [34] is a runtime system which supports scalable support for irregular parallel algo-
rithms. Grappa works for a number of applications, including branch-and-bound optimization,
circuit simulation, and graph processing. Irregular applications are difficult to scale due to large
and unpredictable amounts of communication, and very poor data locality. In order to resolve
this difficulty, Grappa allows high-latency in communication for a large increase in total network
throughput. Instead of sending messages as they appear, they aggregate and batch messages in
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various parts of the system. They show that their framework running on commodity hardware is
competitive against hand-optimized MPI code, and to code running on the Cray XMT machine.

There are also a number of shared-memory frameworks, including Grace [43], X-Stream [47],
GRACE [57, 58], and Galois [36, 41].

Ultimately, while frameworks that are designed to run on distributed memory machines can
in theory support massive peta-byte sized graphs [25, 30], applications running on-top of these
frameworks are severely limited due to the sheer limitations of inter-node communication and
inter-node IO. Furthermore, a number of frameworks impose semantic restrictions, forcing the
programmer to specify a single function for iterating over vertex’s out-edges. Finally, frame-
works such as GraphLab and Pregel provide the user with no way of representing multiple sets
of vertices, and iterating over them simultaneously. We now turn our discussion to the Ligra
graph processing framework, which addresses a number of these issues.

3.2 The Ligra Graph Processing Framework
Our compressed framework is built on top of Ligra, a graph processing framework developed
by Julian Shun and Guy Blelloch. Ligra is specific to shared-memory machines, and provides
primitives designed to make graph traversal algorithms very easy to express. In this section,
we summarize the key features and primitives of Ligra, and also discuss a key optimization
implemented in Ligra that significantly improves the performance of graph traversals.

Ligra provides the user with two data-types - a graph datatype, representingG = (V,E), and
a vertexSubset datatype, representing a subset, V ′ ⊂ V . Ligra also provides the application pro-
grammer with functions for iterating over a graph in frontiers. The first function is a vertexMap,
which allows the user to map over vertices, and the second function is a edgeMap, which allows
the user to map over edges. The library also provides standard functions for querying the size of
datatypes, as well as constructors.

Internally, Ligra represents graphs using the compressed sparse row (CSR) format. A directed
graph is stored as two arrays, one storing the in-edges of vertices, and the other storing out-edges.
An array of vertices is also maintained, with each vertex storing pointers into the in-edge and out-
edge arrays, along with the in-degree and out-degree. As the CSR format for inputting graphs
to Ligra can only represent directed graphs, when passing an undirected graph into Ligra, the
symmetric flag must be passed. For symmetric graphs, only one array of edges is stored.

The vertexMap function takes as input a vertexSubset, U , as well as a boolean function F ,
applies F to all u ∈ U , and returns the set U ′ = {u ∈ U |F (u) = 1}. It has the type

vertexMap : (U : vertexSubset, F : vertex 7→ bool) 7→ vertexSubset

The edgeMap function takes as input a graph, G = (V,E), a vertexSubset, U ⊂ V , a
boolean function on edges, F , and a boolean function C on vertices. The function takes all
(u, v) ∈ E where the source vertex, u ∈ U , and checks F (u, v). If this is true, it then checks
C(v). It then returns all vertices v satisfying both properties. Succinctly, it returns a set of
vertices V = {(u, v) ∈ E|u ∈ U, F (u, v) = 1, C(v) = 1}. Intuitively, the edgeMap function
allows the user to specify a graph traversal by specifying two functions - F , and C, where F
is a function specifying a condition on edges necessary for the target to be included in the next
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frontier, and C is a function specifying a condition on vertices necessary for the target to be
included in the next frontier. It has the type

edgeMap : (U : vertexSubset, F : vertex× vertex 7→ bool, C : vertex 7→ bool) 7→ vertexSubset

Ligra also makes use of the compare-and-swap (CAS) operation, which is described in Sec-
tion 1.1. Compare-and-swaps are used in a number of applications implemented in the frame-
work. Ligra also provides a diverse set of applications implemented in the framework, including
breadth-first search (BFS), Betweenness Centrality (BC), Radii Estimation (Radii), Connected
Components (CC), and lastly PageRank.

3.2.1 Dense and Sparse Representations of Frontiers
While Ligra exposes a single edgeMap function to the application programmer, it has two private
implementations of edgeMap not visible to the programmer. The first version is a sparse version
of edgeMap, which is used when the size of the vertexSet being iterated over is small. The
second version is a dense representation, which is used when the size of the vertex set is large.

The sparse edgeMap is effectively a write-based method for building a new frontier - each
vertex in the current frontier writes to its out-neighbors, applying the F and C functions de-
scribed above to decide whether to include its neighbor in the next frontier. Because the size of
the frontier is smaller than a threshold, the total work is bounded by the sum of the out-degrees
of frontier vertices.

On the other hand, the dense edgeMap can be viewed as a read-based method for building
a new frontier. Every unvisited vertex in the graph satisfying C(v) will iterate over its out-
neighbors, checking to see if any of them are in the current frontier. The dense method can be
performed in parallel over all vertices, skipping over a vertex if it is already visited. Furthermore,
once a vertex i being investigated in the dense version has been added to the vertex-set, it can stop
iterating over its out-neighbors, which makes this method more efficient than edgeMapSparse if
many vertices in the current frontier have edges to i.

This optimization implemented in Ligra is based off of the work of Beamer et al. [3, 4],
who worked on developing a highly performant breath-first search algorithm for shared-memory
machines. Their result was a hybrid technique which they called a “Direction-optimizing breath-
first search”. They introduce the idea of a “bottom-up” BFS (in contrast to the top-down BFS,
which simply takes the current frontier, and in the worst-case inspects every out-edge), which is
used when the size of the current frontier is large. The bottom-up method is significantly faster
when the size of the current frontier is large because for a given unvisited vertex in the graph, it
will stop iterating over its out-edges once it has found an edge to a vertex in the current frontier.

3.2.2 The Need for Compression
While Ligra addresses a number of issues raised regarding the current state of graph-processing
frameworks, it fails to address the issue of keeping up with ever-increasing scale of modern
graphs[21]. Compared to distributed memory frameworks, which can simply throw more ma-
chines at an enormous graph, shared-memory systems simply cannot fit the entire graph in mem-
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ory, and as a result have to resort to paging, or processing the graph entirely from disk, which
typically cripples the performance of graph algorithms.

Furthermore, even high-end modern shared-memory machines, such as the Intel Sandy Bridge
based Dell R910 which has 32 cores (64 hyper-threads) and can be configured with up to 2 Ter-
abytes of memory have a fairly large, but finite amount of main-memory. In the not-too-distant
future, graphs exceeding this size are likely to become the norm in both industry and academic
settings, and handling such graphs elegantly in a shared-memory framework is important for cre-
ating performant real-time applications. Compression is crucial for reducing the space of these
graphs down to a manageable size, and for fitting the entire graph in memory.

We note that all current publicly available real-world graphs fit in main memory on a sin-
gle shared-memory machine. Despite this fact, compression is still a useful feature for shared-
memory graph-processing frameworks due to the reduced memory footprint of the graph in mem-
ory. Furthermore, by compressing the graph, one can use a smaller, and cheaper machine in order
to process the graph. Lastly, despite the fact that applications must uncompress the graph in order
to access a vertex’s adjacency list, we will show that there is little to no performance degrada-
tion, and in some cases, performance improvement when running an application on a compressed
graph.

3.3 Supporting Compressed Representations

Cogra, our compressed graph processing framework extends Ligra, adding support for compress-
ing existing graphs, and operating on already compressed graphs. Our goal when modifying
Ligra was to make no change in the interface presented to the application programmer. To this
end, the compression framework resides solely in the backend of ligra, and requires the modifi-
cation of the private edgeMap functions.

3.3.1 Encoding

Cogra provides an encoding program that takes a graph given in compressed sparse row format
and generates a binary file of the compressed graph. Adjacency-lists are compressed using the
difference-encoding technique described in Chapter 2. Each difference-encoded adjacency list
is then encoded using a k-bit codes. We implemented two k-bit codes - byte, and nibble codes,
which are 8-bit and 4-bit codes, respectively. The encoder emits a graph in binary, which consists
of an array of vertices, followed by two arrays of compressed in-edges and out-edges. If the
graph is specified to be symmetric, as is the case for undirected graphs, a single array of edges is
written.

Byte-codes are fast to decode, as they lie on byte-aligned boundaries. However, if most val-
ues being encoded lie between [0, 23), then nibble-codes are likely to provide significantly better
compression. Nibble-codes lie on 4-bit boundaries, and require more bit-operations to decode.
Our implementation of nibble-encoding places the first nibble on a byte-aligned boundary. This
makes accessing the start of a vertex’s compressed adjacency list significantly easier, as we sim-
ply store a pointer to the start of the list, instead of an offset from a base consisting of the number

15



1: procedure PARALLELCOMPRESS(G = (V,E))
2: C = alloc(|V |)
3: Adjs = alloc(|V |)
4: parfor v ∈ V do
5: (Adjs[i], size) = sequentialCompress(v,v.deg,&Adjs[i])
6: C[i] = size
7: totalSize = plusScan(C, C, |V |)
8: return compact(Adjs, C, alloc(totalSize))

Figure 3.1: parallelCompress implementation

1: procedure SEQUENTIALCOMPRESS(v, deg, &outEdges, &Out)
2: offset = 0
3: if deg > 0 then
4: offset = CompressFirstEdge(&outEdges[0], v, &Out, offset)
5: for j = 0 to deg−1 do . Loop over out-neighbors
6: offset = CompressNextEdge(&outEdges[j], &outEdges[j-1], &Out, offset)
7: return offset

Figure 3.2: sequentialCompress implementation

of nibbles before the start of the adjacency list. In practice, we found byte-aligning the first
nibble to require minimal extra space.

We compress the entire edge-set in parallel, using a function parallelCompress, which we
now illustrate here.

ParallelCompress exploits parallelism over the vertices, sequentially compressing each ver-
tex’s adjacency list in parallel. Each vertex writes its compressed adjacency list representation
into memory separately, storing a pointer in Adjs, and returning a size denoting the total number
of bytes used. It then performs a parallel prefix-sum (plusScan) using the associative operator +
in order to determine the total size of the compressed edge-array. The final step is performed by
compact, which in parallel, copies the adjacency lists stored in Adj into one contiguous block of
memory.

Notice that we cannot easily compress a given vertex’s adjacency list in parallel. This is due
to the fact that the size of the compressed representation of a given difference, such as vi−vi−1 is
unknown - it could take a single byte, or two bytes, or possibly in the worst case, more bytes than
an un-compressed representation of the difference. Because of this, we compress each adjacency
list sequentially while maintaining an offset into the compressed-adjacency list.

In the pseudo-code for sequentialCompress, the bulk of the work is done by two functions,
CompressFirstEdge, and CompressNextEdge. CompressFirstEdge takes two values - v0, the
first vertex in v’s sorted adjacency list, as well as v. It then stores a k-bit encoded version of
the difference, v0 − v. Because this quantity may be negative, we store the absolute value,
|v0 − v| and also use an extra-bit which stores the sign of the difference. The second function,
CompressNextEdge simply stores the difference vi − vi−1. As the adjacency list is sorted, and
we do not support multi-edges, all differences will be strictly greater than 0.

Once a graph has been processed by the encoder program, its compressed representation is
written to disk. Because the compression must be performed a single time (the Cogra runtime
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1: procedure DECODESPARSE(v, deg, &outEdges, F , C, &Out)
2: prevEdge = −1
3: for j = 0 to deg−1 do . Loop over out-neighbors
4: if j = 0 then
5: ngh = FirstEdge(&outEdges) + v
6: prevEdge = ngh
7: else
8: ngh = NextEdge(&outEdges) + prevEdge
9: prevEdge = ngh

10: if (C(ngh) == 1 and F (v, ngh) == 1) then
11: Add ngh to &Out

Figure 3.3: decodeSparse implementation

simply reads the compressed representation into memory), we did not pursue minute optimiza-
tions regarding the efficiency of our compression.

3.3.2 Decoding
In order to support decoding, we modified several pieces of Ligra, none of which alter the in-
terface observed by the application programmer. Firstly, the function used to construct a graph
from a file was altered to take as input a compressed graph (possibly symmetric). It simply reads
in the binary compressed graph, writes it into memory, and returns a pointer to the graph.

The interfaces to edgeMap, and vertexMap provided by the framework are identical to those
of Ligra. However, the private functions called by edgeMap, namely edgeMapSparse and edgeMap-
Dense are modified to iterate over the compressed graph. As the graph is accessed primarily for
traversal-type queries, we implemented a generic function, decode, which decodes a given ver-
tex’s adjacency list. For the purpose of illustration, we will describe two functions: decodeSparse
and decodeDense, which correspond to versions of edgeMapSparse and edgeMapDense that de-
code the compressed graph. The corresponding edgeMapSparse and edgeMapDense functions
in Cogra are effectively wrappers around the two decoding functions.

DecodeSparse takes as input a vertex v, its degree, denoted as deg, a pointer &outEdges,
which is the location in memory of the start of vertex v’s compressed adjacency list, as well
as the functions F and C. Recall that F is a boolean function over edges, and C is a boolean
function over vertices. The pseudo-code for decodeSparse is more complicated than that of
edgeMapSparse due to the logic for decoding the compressed adjacency list. We use two func-
tions to decode compressed values, FirstEdge and NextEdge.

The FirstEdge function takes as input a memory location, &loc, and decodes the k-bit en-
coded value stored at &loc. It also decodes the specially stored sign-bit for the first value, as
the first value stored may be negative. For all other values stored following the first compressed
value, the sign-bit is not stored, as values are strictly greater than 0. The NextEdge function sim-
ply decodes these k-bit encoded values. It requires the value of the previous edge, as the value
stored is the difference vi− vi−1. We implemented two versions of FirstEdge and NextEdge, one
for byte-codes, and one for nibble-codes respectively.

DecodeSparse then iteratively decodes the entire adjacency list. For each decoded edge, we
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1: procedure DECODEDENSE(i, deg, &inEdges, F , C, &Out, U )
2: prevEdge = −1
3: for j = 0 to deg−1 do . Loop over in-neighbors
4: if j = 0 then
5: ngh = FirstEdge(&inEdges) + v
6: prevEdge = ngh
7: else
8: ngh = NextEdge(&inEdges) + prevEdge
9: prevEdge = ngh

10: if (ngh ∈ U and F (v, ngh) == 1) then
11: Add i to &Out
12: if (C(i) == 0) then break

Figure 3.4: decodeDense implementation

check to see whether F (v, ngh) == 1, and if the target, ngh, satisfies C(ngh) == 1. If this the
case, then we add ngh to Out, the vertexSubset that is returned. Notice that we must maintain the
value prevEdge, storing the target vertex of the previous edge, as the PrevEdge function requires
the value of the previous edge in order to decode the current edge.

DecodeDense takes as input a vertex, i, which is not in U , i’s degree - deg, a pointer to
i’s in-edges, &inEdges, as well as F , C and &Out, a pointer to the new frontier returned by
edgeMapDense. It also takes U , the current frontier set. The functions F and C are specified
identically to the functions used in decodeSparse. DecodeDense then iterates over i’s in-edges,
decoding the first edge using FirstEdge, and subsequent edges using NextEdge. Once again, the
id of the previously decoded vertex is stored in prevEdge for use in NextEdge.

If the decoded vertex, ngh, which has an in-edge to i is in U , that is ngh ∈ U , and F (ngh, i)
then we add i to &Out, placing i in the new frontier. Implicit in decodeDense is the fact that
C(i) == 1 - otherwise, we would not have bothered iterating over its in-edges to check if it
should be a part of the new frontier. Notice that in line 12, we perform if(C(i) == 1)then break.
This is done in order to break out of the loop early, and stop iterating over the subsequent out-
neighbors if i is already added to Out.

Notice that deg, the degree of v is passed into both functions. We also tested an implementa-
tion where the degree was also k-bit encoded into a vertex’s adjacency list, but found this version
to provide no substantial speedup.

3.4 Applications
We test our implementation on the same applications as Ligra in order to provide a comparison of
the cost of compression in a graph-processing framework. We now describe the five applications
as they are implemented in Ligra. Because Cogra maintains the same interface for the application
programmer as Ligra, the applications were not modified at all.

Breadth-First Search.
Ligra implements the top-down version of BFS. Given a graph, G = (V,E), and a starting

vertex, r, (this is the first vertex in the ordering, to maintain consistency with Ligra), the algo-
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rithm computes the breath-first search tree rooted at r. The algorithm takes as many rounds as
the distance farthest away from r, where distance is measured as shortest-path distance on the
graph.

Initially, the algorithm creates a single vertexSet, which contains only the root, r. While this
vertexSet (representing the current frontier) is non-empty, it performs an edgeMap, which uses an
update function that atomically visits unvisited neighbors using a compare-and-swap, and adds
them to the next frontier (this is the F function on edges). The C (or Condition) function just
checks whether a given vertex has been visited. It is also used to provide an early-termination
condition if the framework is using edgeMapDense.

Betweenness Centrality. Ligra also implements an algorithm for computing the betweenness
centrality of a vertex. The betweenness centrality of a vertex, v, measures how central, or impor-
tant the node is in a graph by measuring the number of pair-wise shortest paths between vertices
in the graph that pass through v. Formally, given a graph, G = (V,E), let σst denote the number
of s− t shortest paths in G. Let σst(v) denote the number of shortest paths in G passing through
v. Then, the betweenness centrality of v is simply the ratio of these two quantities, summed over
all s, t 6= v, that is: ∑

s,t∈V,s 6=t6=v

σst(v)

σst

The betweenness centrality algorithm is an implementation of Brandes‘ algorithm [11], which
solves the betweenness centrality by solving the sub-problem of computing single-source shortest-
path information from every vertex. Implementing the algorithm for all vertices requires com-
puting two breath-first searches for every v ∈ V , the first operating on the original graph, and the
second operating on the transpose of G. As transpose is implemented by simply swapping point-
ers between the in-edges and out-edges under-the-hood, this operation is not computationally
expensive. However, Ligra only performs this computation for a single vertex, and allows the
user to run it on more vertices if desired. The Ligra implementation computes an approximate
betweenness centrality, and is described in more detail in [51].

Radii Estimation. Ligra provides an implementation of approximate radii calculation. The
radii of a given vertex, v, in the graph is intuitively the locally observed diameter of the graph
from v. Concretely, given G = (V,E) the Graph Radii problem is compute for each v ∈ V ,
maxu∈V,u6=v d(v, u) where d(u, v) is the shortest-path distance between u and v in G. Intuitively,
this is the maximum shortest path distance between v and any other u ∈ V . Finally, notice that
the diameter of G is simply maxv∈V Radii(v).

A simple and direct implementation to calculate the Radii of G requires solving the single-
source shortest path problem for each v ∈ V , which can be done by running a breadth-first
search, or another analogous shortest-path algorithm. Because this is fairly computationally
expensive, Ligra implements a method for computing an approximation of Graph-Radii using
bit-parallelism. Initially, the chooses K vertices from V at random, and assigns all v ∈ V a
bit-vector of length K. The K chosen vertices (labeled [0, k − 1] all flag exactly one bit in their
vector to 1). The algorithm then forms a vertexSubset out of these k vertices, and runs a parallel
BFS (multiple-source BFS). When processing an edge (u, v) from the current frontier, u bitwise-
ORs its bit-vetor with v’s vector. If v’s bit-vector changes, the v is added to the next frontier. The
algorithm terminates (the frontier becomes size 0) when no bit-vectors change between rounds.
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Connected Components. We now describe a traversal-based implementation of connectivity
labeling. Although we will cover connectivity in great-detail in later portions of this work, we
present a simple definition of the problem here. Given an undirected graph, G = (V,E) the
connectivity labeling problem is to produce a set of labels, L, |L| = |V |, s.t. all vertices in the
same component (vertices reachable from each other) have the same label, i.e. L[u] == L[v] if
there exists a u, v path, and L[u] 6= L[v] if no u, v path exists.

Ligra implements a simple label-propagation algorithm which works as follows. Initially,
every vertex is assigned its own vertex-id as its label, and all vertices are placed on the current
frontier. While the current frontier is non-empty, we continue to run an edgeMap which checks
for a given edge, (u, v) whether u’s number is smaller than v’s. If this is the case, it atomically
updates v’s number to be u, and places v on the next frontier. The algorithm reaches a fixed-
point and terminates when every vertex is labeled with the minimum label that is reachable in the
graph. Atomically writing the minimum ID is done by using a compare-and-swap [54], called
writeMin.

PageRank.
Ligra also provides an implementation of the PageRank algorithm. PageRank is an iterative

method to compute the relative importance of nodes in a graph, originally developed to run on
a web-graph, and compute the importance of webpages [12]. Concretely, given a graph G =
(V,E), and a damping factor 0 ≤ γ ≤ 1, and a constant ε, the algorithm initializes each vertex’s
rank to be 1/|V |. On each round, it applies an update rule which modifies a vertex’s rank as
follows:

R[v] =
1− γ
|V |

+ γ
∑

u∈N−(v)

R[u]
deg+(u)

where R[v] denotes the rank of v. The algorithm stops updating values for vertices once∑
v∈V

Rt[v]−Rt−1[v] < ε

The Ligra implementation of PageRank simply implements this basic algorithm. Because each
vertex is updated in every round, the frontier is always of size |V |. This means that the edgeMap-
Dense will always be used (as opposed to edgeMapSparse), which makes the update-step work-
optimal, as all vertices will always satisfy C(i) (we only set C(i) = 1 once we have reached the
termination condition based on ε).

3.5 Experiments and Evaluation
We now evaluate both the performance, as well as the compression ratios achieved by Cogra.
We test two versions of Cogra, one using byte-codes, and the other using nibble-codes (8-bit
and 4-bit codes, respectively). We also perform an evaluation of the compression ratios achieved
by our compression algorithms, and evaluate a diverse set of reordering algorithms in order to
investigate which reordering algorithm is most effective in reducing the number of bits per edge.
We refer the reader to Section 1.1 for an explanation of our experimental setup.
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We tested our framework on a suite of both real-world and synthetic graphs. We remind the
reader that the synthetic graphs used in our tests are created by graph generators from PBBS and
exhibit good locality. We also obtained a suite of real-world graphs. These include the Yahoo
graph [59], which is the largest non-synthetic publicly available web-graph and is provided by
Yahoo. Some graphs, such as nlpkkt, are large matrices taken from optimization problems (com-
puting KKT-conditions), and turned into graphs [49]. Our graphs are taken from the Stanford
Network Analysis Project (SNAP), and the Florida Sparse Matrix Collection [1, 17]. The Twitter
graph is a (now slightly old) publicly available graph of the Twitter social network. Finally, the
uk-union graph is a graph constructed from the union of 12 snapshots of subsets of the United
Kingdom web network [9]. We note that both the Twitter and uk-union graphs are asymmetric.
We also symmetrized the Yahoo graph in order to construct an even larger graph to test on. Some
graphs also include self-loops and multi-edges – these were pruned before compression. All
graphs and their respective sizes are shown in Table 3.1.

Input Graph Num. Vertices Num. Directed Edges
random 10,000,000 98,201,048

rMat 16,777,216 99,445,780
3D-grid 9,938,375 59,630,250

soc-LiveJournal 4,847,571 85,702,474
cit-Patents 6,009,555 33,037,894

com-LiveJournal 4,036,538 69,362,378
com-Orkut 3,072,627 234,370,166
nlpkkt240 27,993,601 746,478,752

Twitter 41,652,231 1,468,365,182
uk-union 133,633,041 5,507,679,822

Yahoo 1,413,511,391 12,869,122,070

Table 3.1: Graph inputs.

3.5.1 Reordering Algorithms
We now evaluate a collection of reordering algorithms described in Section 2.2. We measure the
algorithms performance with respect to the average log cost, and average log gap costs described
in Section 2.1.1, as these measures are directly related to the number of bits-per-edge obtained
by difference encoding. The reordering algorithms in Table 3.2 include the BFS, DFS, hybrid,
recursive, and parallel-separator algorithms described in Sections 2.2.1 and 2.2.2 as well as
METIS, which was described in Section 2.2.2.

We do not apply the reordering algorithms on the synthetically generated graphs, due to
the graph generators emitting the graph in a local ordering. Furthermore, for some graphs, the
parallel-separator (p-sep) algorithm and METIS take too much memory or an inordinate amount
of time, and as a result we were unable to obtain any compression results for these ordering
algorithms on both the uk-union and Yahoo graphs. Finally, as one odd anomaly, none of the
reordering algorithms, including METIS, which has been experimentally tested for the better
part of a decade, was able to a better ordering than the initial ordering. This leads us to suspect
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that the graph-framework behind Twitter is doing some fairly interesting work on extracting
locality from their massive graph.
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Figure 3.5: Number of bits per edge required for byte versus nibble coding.

Input Graph gap log gap log gap log gap log gap log gap log gap log gap log
Ordering orig. orig. rand. rand. p-sep p-sep dfs dfs bfs bfs hybrid hybrid bfs-r bfs-r metis metis
random 6.88 6.74 – – – – – – – – – – – – – –

rMat 18.12 19.06 – – – – – – – – – – – – – –
3D-grid 10.6 8.12 – – – – – – – – – – – – – –

soc-LiveJournal 10.6 16.97 15.71 20.05 8.08 12.18 9.86 16.16 10.67 16.96 9.64 15.3 10.36 16.48 9.39 15.2
cit-Patents 16.43 19.48 17.97 20.35 8.57 10.1 11.7 16.37 12.3 17.53 11.66 15.09 13.0 16.39 10.25 13.98

com-LiveJournal 10.28 16.13 15.65 19.78 7.95 11.84 9.71 15.83 10.84 16.93 9.52 14.91 10.34 16.19 9.33 14.93
com-Orkut 10.42 17.5 13.61 19.39 8.58 14.53 10.09 17.7 10.35 17.85 9.87 17.26 10.16 17.74 10.03 16.85
nlpkkt240 4.49 23.74 19.28 22.57 4.13 8.18 5.1 14.27 4.02 17.44 3.81 11.17 3.15 8.56 3.87 10.61

Twitter 9.23 18.76 15.22 23.14 12.12 20.64 12.16 22.17 10.6 22.15 11.59 21.69 10.74 21.01 11.01 20.97
uk-union 3.14 11.44 17.08 24.83 – – 3.0 13.39 3.01 18.62 2.31 14.41 – – – –

Yahoo 7.6 24.56 21.33 28.22 – – 6.56 18.09 7.14 23.34 6.22 17.66 – – – –

Table 3.2: Average log cost and average gap cost of graph inputs using various ordering algo-
rithms.

Input Graph byte nibble byte nibble byte nibble byte nibble byte nibble byte nibble byte nibble byte nibble
Ordering orig. orig. rand. rand. p-sep p-sep dfs dfs bfs bfs hybrid hybrid bfs-r bfs-r metis metis
random 12.03 11.48 – – – – – – – – – – – – – –

rMat 24.88 26.65 – – – – – – – – – – – – – –
3D-grid 18.68 17.34 – – – – – – – – – – – – – –

soc-LiveJournal 16.76 16.37 22.26 23.12 13.96 12.98 15.93 15.36 16.89 16.49 15.8 15.09 16.55 16.06 15.18 14.75
cit-Patents 23.15 24.28 24.44 26.31 14.29 13.75 18.02 18.0 18.7 18.92 18.01 17.98 19.28 19.73 15.86 16.06

com-LiveJournal 16.4 15.96 22.24 23.06 13.81 12.8 15.74 15.16 17.09 16.72 15.64 14.93 16.49 16.03 15.06 14.93
com-Orkut 16.04 15.93 19.69 20.2 14.14 13.46 15.91 15.49 16.06 15.83 15.66 15.2 15.86 15.6 15.36 15.4
nlpkkt240 11.87 8.62 25.12 27.8 9.59 7.4 11.52 9.11 10.36 7.49 10.06 7.47 9.0 6.34 9.39 7.33

Twitter 14.94 14.4 21.4 22.38 17.98 18.24 18.15 18.3 16.58 16.24 17.53 17.56 16.51 16.38 16.75 16.75
uk-union 9.49 6.62 23.54 24.84 – – 9.37 6.43 9.77 6.57 8.98 5.64 – – – –

Yahoo 14.3 12.64 28.42 30.64 – – 13.31 11.25 14.04 12.05 13.02 10.86 – – – –

Table 3.3: Average bits per edge using byte codes and nibble codes. Storage for vertices is not
included.

We also investigated the actual compression ratios of the reordering schemes, measured in
the number of bits-per-edge. Tests were run using Cogra equipped with both nibble and byte
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codes, and the resulting bits-per-edge values are charted in Table 3.3. We do not include the
space required to store vertices, or vertex-degrees, as both the vertices and vertex-degrees are
uncompressed in our framework. Furthermore, notice the direct correspondence between the re-
ordering algorithm that achieves the minimum bits-per-edge for a given graph, and the reordering
algorithm that minimizes the average log gap cost.

Figure 3.6 graphically depicts the average bits-per-edge required for compressing a graph
using the best reordering algorithm for that graph on byte-codes. Notice that compression using
nibble-codes almost always decreases the number of bits-per-edge, with the one exception of the
rMat graph, which surprisingly requires more bits-per-edge to represent using nibble codes. This
is because in rare cases when most values being compressed require ≈ 7 bits, byte-codes will be
able to encode the values in a single byte, while nibble-codes will need to use 12 bits in order to
store them. We point the reader to Figure 2.3 where this this situation is illustrated graphically.

Input Graph Ligra Cogra (byte) Cogra (nibble)
random 433 MB 228 MB 221 MB

rMat 465 MB 444 MB 465 MB
3D-grid 278 MB 219 MB 209 MB

soc-LiveJournal 362 MB 188 MB 178 MB
cit-Patents 156 MB 107 MB 105 MB

com-LiveJournal 294 MB 152 MB 143 MB
com-Orkut 950 MB 440 MB 421 MB
nlpkkt240 3.1 GB 1.06 GB 815 MB

Twitter 12.08 GB 6.17 GB 5.95 GB
uk-union 45.9 GB 15.5 GB 10.9 GB

Yahoo 62.8 GB 37.9 GB 34.4 GB

Table 3.4: Total graph storage sizes, including both vertices and edges.

We also list the sizes required to store each graph in both Ligra, Cogra (byte) and Cogra
(nibble) in Table 3.4, once again using the ordering that produced the best results from Table 3.3.
This size includes both the edges, vertex offsets, and the vertex degrees. We note that while Ligra
can implicitly store the degree of a vertex using the vertex offsets array, Cogra must explicitly
store the degrees of each vertex. This leads to an extra O(|V |) amount of space, which makes
graphs that have large vertex/edge ratios appear to compress poorly in our framework. However,
graphs where the number of edges is an order of magnitude larger than the number of vertices,
such as nlpkkt240 or uk-union display a significant amount of space-savings compared to Ligra.

3.5.2 Performance and Memory Utilization
We now consider the performance of Cogra with respect to Ligra on the five applications de-
scribed in Section 3.4. We do not include the time required to compress the graph in our timings,
as this process happens only once, and is subsequently saved to disk. We denote the byte-encoded
version of Cogra as Cogra (byte), and the nibble-encoded version of Cogra as Cogra(nibble). We
report running times in a tabular format in Table 3.5. Each time is the median of three runs of
the application.
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Input Graph Breadth-first Search Betweenness Centrality Graph Radii Connected Components PageRank
(L) (C-b) (C-n) (L) (C-b) (C-n) (L) (C-b) (C-n) (L) (C-b) (C-n) (L) (C-b) (C-n)

random 0.056 0.056 0.08 0.151 0.159 0.219 0.289 0.304 0.445 0.0762 0.0795 0.117 0.064 0.0595 0.081
rMat 0.09 0.092 0.121 0.314 0.341 0.481 0.819 0.898 1.33 0.244 0.276 0.426 0.219 0.212 0.295

3D-grid 0.219 0.212 0.234 0.574 0.56 0.605 5.57 6.08 8.28 0.66 0.703 1.41 0.041 0.037 0.045
soc-LiveJournal 0.029 0.028 0.033 0.094 0.096 0.136 0.249 0.256 0.405 0.09 0.076 0.135 0.062 0.057 0.08

cit-Patents 0.031 0.031 0.036 0.086 0.086 0.11 0.191 0.207 0.29 0.047 0.048 0.07 0.036 0.033 0.042
com-LiveJournal 0.025 0.025 0.029 0.08 0.084 0.117 0.189 0.188 0.305 0.062 0.067 0.112 0.048 0.045 0.062

com-Orkut 0.03 0.032 0.049 0.139 0.15 0.27 0.395 0.379 0.665 0.131 0.107 0.226 0.163 0.14 0.232
nlpkkt240 0.831 0.463 0.526 2.4 1.36 1.6 22.3 22.8 40.4 0.795 0.589 0.931 0.351 0.222 0.257

Twitter 0.268 0.28 0.352 4.65 4.24 6.58 7.5 5.89 7.76 3.25 2.4 3.84 2.45 2.02 3.03
uk-union 2.12 1.44 1.96 5.39 4.0 5.57 36.2 16.8 25.0 6.45 2.73 4.03 6.28 2.56 2.9

Yahoo 6.01 3.87 4.85 16.1 13.1 18.6 25.5 23.5 35.5 14.4 10.1 15.7 10.0 7.47 9.86

Table 3.5: Running times on 40 cores with hyper-threading on different applications for Ligra
(L), Cogra using byte coding (C-b) and Cogra using nibble coding (C-n).

We also include speedup plots of the running time of Ligra, Cogra (byte) and Cogra (nib-
ble) against the number of threads in Figure 3.6. The running time of Cogra (nibble) is almost
always slower then the running time of Cogra (byte). The notable exception is for PageRank
on nlpkkt240, where the nibble-encoded implementation nearly beats the byte-encoded imple-
mentation. We suspect this is due to the nibble-encoded representation of nlpkkt240 requiring
≈ 6 bytes-per-edge, whereas the byte-encoded representation requires ≈ 9 bytes-per-edge. The
fact that the graph is more compressed in memory results in a reduction in the number of cache
misses, which is likely what is responsible for the performance improvement.

Lastly, we also plot the peak-memory usage for both Ligra, Cogra (byte) and Cogra (nibble)
for several input graphs. We obtained memory usage information using Valgrind [35], using the
massif tool. We then generated plots of the massif data using ms print, and plotted the data for
all three frameworks. Massif allows us to visualize the peak-memory usage for a number of
snapshots taken during the applications life-time. We only profile how much heap-memory the
programs use. We note that Cogra always have lower peak-memory usage than Ligra. For some
graphs, however, Cogra uses memory on the same order as Ligra. However, this only occurs on
graphs with a high vertex-to-edge ratio (the number of vertices and edges are roughly on the same
order), when running applications that store auxiliary data-structures with size proportional to the
number of vertices. For all other graphs, with low vertex-to-edge ratios, we observe a significant
reduction in peak-memory usage compared with Ligra.
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Figure 3.6: Times versus number of threads on various input graphs on a 40-core machine with
hyper-threading. (40h) indicates 80 hyper-threads.
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Figure 3.7: Times versus number of threads on various input graphs on a 40-core machine with
hyper-threading. (40h) indicates 80 hyper-threads.
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Figure 3.8: Peak memory usage of graph algorithms on several inputs.
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Chapter 4

Connectivity Labeling

We now turn our attention to the connectivity labeling problem, which illustrates the second
approach to making graph algorithms highly performant, namely that of exploiting parallelism
while ensuring that the resulting algorithm is work-efficient. In this chapter, we formally define
the connectivity labeling problem, the difficulties found in attaining work-efficient algorithms,
and review a number of historical as well as recent approaches to connectivity.

The connectivity labeling problem is a natural and basic problem on graphs that arises in a
wide variety of fields such as VLSI design, and computer vision. The problem takes as input
an undirected graph G = (V,E) and assigns vertices within the same connected component
identical labels, and vertices within different components unique labels. Two vertices, u, v ∈ V
are defined to be within the same component if there exists a path from u to v.

Sequentially, graph connectivity has a number of very natural solutions. Perhaps the simplest
and most intuitive solution is to perform a breadth-first search starting at an arbitrary vertex.
All vertices reachable from the initial vertex are given the same label. If any vertices remain
once the search terminates, the algorithm increments its label and performs another breadth-first
search starting at one of the unvisited vertices. An identical algorithm is possible using depth-first
search.

Both the breadth-first and depth-first connectivity labeling require linear work. Union-find
can also be effectively used in order to compute connectivity, and require nearly-linear work.
However, parallelizing these algorithms is difficult. While breadth-first search can be run in
parallel using techniques described in [3], depth-first search and union-find remain difficult to
parallelize. We further note that any algorithm for connectivity must perform at least linear-work
in the number of edges and vertices, as in the worst case, every edge will have to explored, and
we return output proportional to the number of vertices.

4.1 Historical Approaches

Connectivity was one of the first problems to be extensively studied by the parallel algorithm
community, and has a long history in the literature. The primary approach used in a number
of these algorithms has been to compute a spanning-forest of the graph (possibly minimal) in
parallel. To this end, a number of recent algorithms for computing minimum spanning forests in
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parallel directly extend to create parallel connectivity algorithms. We first review a number of
important results and algorithms on graph connectivity, covering spanning-forest methods, the
Random Mate algorithm, and finally describe recent work on low-diameter decompositions.

4.1.1 Parallel Spanning-Forests
One of the first algorithms expounding this idea was published by Shiloach and Vishkin[50] and
operates by applying fairly sophisticated tree-building and pointer-jumping techniques. Their
technique involves two operations - ‘hooking’, and ‘short-cutting’, which hook one tree onto
another, and decreases the height of a tree respectively. In addition to the original graph, G,
they also maintain a pointer graph, which mutates over the course of the algorithm. At the end
of the algorithm, every vertex has a pointer to the root of the tree, so querying whether two-
vertices belong to the same tree can be done in constant time. Furthermore, a tree grows until
it includes every vertex in a connected component, so two vertices can determine in constant
time whether they belong to the same component. Extending this algorithm to the connectivity
labeling problem is simple, as each vertex simply takes as its label the id of the root node of its
tree.

We note that shortcutting is effectively a pointer-jumping technique, which sets every nodes
pointer to the node its parent points to. By performing this operation often enough, deep trees
are flattened into stars, which in turn increases the efficiency of hooking, and future short-cuts.
As eventually, every vertex in a tree points to the root (the pointer graph becomes a collection
of stars), the entire algorithm can be effectively thought of as hooks, with the added operation
of pointer-jumping. The real subtlety in these algorithms involves strategies for hooking and
short-cutting.

Shiloach and Vishkin [50] describe two methods, conditional-hooking, and unconditional-
hooking. Conditional hooking melds two trees together, placing the root with a larger id as a
child of the root with a smaller id. Unconditional-hooking is used when a tree has not been
short-cut or hooked for one round. In this case, all vertices pointing to the stagnant root inspect
their neighbors to see if one points to a different tree. In this case, they abandon the stagnant
tree, and move themselves, and the subtree to the new tree.

Another algorithm later developed by Awerbuch and Shiloach [2] builds on the work of
Shiloach and Vishkin, but modifies the unconditional hooking step. Instead of allowing any
tree to unconditionally hook itself away from a stagnant root, their algorithm only allows stars
to be unconditionally hooked. They focus on stars because membership queries within a tree are
O(1), which is desirable when testing whether two vertices come from the same tree.

Unfortunately, while both algorithms provided valuable insight on parallelizing connectivity,
both the Shiloach and Vishkin algorithm, and the Awerbuch and Shiloach have super-linear work.
While they both guarantee that the number of trees decrease by a constant fraction, and that
we stop hooking trees in O(log n) rounds, they do not prove a bound on the number of edges
removed per-round. Therefore, in the worst case, both algorithms require O(m log n) work.
However, these algorithms can be made to be work-efficient by using somewhat complicated
sampling techniques.

We also describe a recent algorithm by Patwary et al. [37]. They present a multi-core algo-
rithm for computing spanning forests (with computing the connected components as a particular
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application). Their main contribution is effectively parallelizing the union-find algorithm, which
creates a special critical section for the Union operation in union-find. They provide a method
of entering this critical section, which uses the expected strategy of locks. They parallelize the
algorithm by adding a lock for every vertex. To prevent deadlock, they have each process acquire
necessary locks in a predetermined order. They also present a lock-free approach which they call
‘verification’. The technique involves having each processor storing edges that caused Union
operations to be performed. At the end of the algorithm, each processor simply checks to ensure
that the endpoints of all Union edges are in the same component (this ensures correctness). If
this is not true, the edge is marked for re-processing.

4.1.2 Random-Mate
A more broadly useful technique known as Random Mate can also be applied to build connec-
tivity algorithms. Random mate algorithms can be viewed as randomized versions of spanning-
forest algorithms, where we randomize over hooking. In one formulation of random mate, ver-
tices are assigned to be either star-centers, or satellites (the analogy is useful for exposition),
with satellites contracting into star-centers. Both classes are assigned with equal probability.
Algorithms using this technique are described by Reif [46] and Phillips [40].

Although the original papers did not describe the algorithm in the context of contracting the
graph between each round, they can be easily extended to do so. If vertices are contracted, then
the final round of the random-mate algorithm will produce a set of isolated nodes, which each
represent a connected component of the graph. By maintaining contraction information between
rounds, one can re-expand the graph in order to write the component id of each vertex. Although
random-mate allows one to easily prove that 1/4 of the vertices are removed each round, it not
possible to get such a bound on the number of edges remaining after a round. Therefore, as the
number of rounds is O(log n) with high probability, and on each round, we must do O(m) work,
the total work of random mate is O(m log n).

4.1.3 Work-Efficient Algorithms
A number of work-efficient polylogarithmic-depth connectivity algorithms have been designed [16,
19, 22, 23, 39, 42]. However, these algorithms are based primarily on random edge sampling, or
on theoretical linear-work minimum spanning forest algorithms. Algorithms are usually based on
sampling and filtering edges, using fairly sophisticated techniques to prove the work-efficiency
of their methods. The algorithms are also fairly complicated and unfortunately do not appear to
be practical, as there are no implementations of these algorithms. We now turn our focus to some
theoretical tools which will be of use when designing a practical work-efficient connectivity
algorithm.

4.1.4 Other Approaches
We also wish to saw a few words about other (not work-optimal) approaches to connected com-
ponents that are encountered in practice. The first is a technique known as label-propagation. In
label-propagation, each vertex is initially assigned a component id equal to its vertex id. Then, in
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each round, each vertex inspects all of its neighbors. If any of its neighbors have a component id
smaller than its component id, it updates its component id to this new minimum. The algorithm
continues to perform this iteration over all vertices until no vertices update themselves, and a
fixed point is reached. A quick analysis of a naive implementation of this algorithm shows that
we perform O((m + n)d) work in O(d) depth where d is the diameter of the graph, as in the
worst case, the minimum label takes d steps to propagate across the graph, and on each round
we do O(m+ n) work as we inspect all edges. In practice, graph processing frameworks tend to
implement an asynchronous algorithm [28, 51].

Very recently, a new algorithm based on empirical properties of real-world graphs was pro-
posed by Slota et al. They describe a ‘Multistep’ method, which we now summarize. The key
observation they use to build their new algorithm is that the majority of large real-world graphs
tend to have a single large connected component, and a large number of smaller connected com-
ponents. Therefore, their Multistep method picks a vertex – with high probability it is part of the
large connected component – and runs a simple BFS in order to consume this component. Then,
for the remaining components, they apply the label propagation algorithm that they refer to as
a ‘Coloring’ algorithm. As the remaining components in the graph are all extremely small, the
label-propagation only runs for maxCi O(diamCi) many rounds, whereCi are the individual com-
ponents. Their approach can be effectively summarized as running 1) A fast parallel connectivity
algorithm until a large component is removed from the graph, and 2) running label-propagation
on the remaining vertices in the graph.

4.2 Low-Diameter Decompositions
The connectivity algorithm which we present in the following chapter is theoretically grounded
in recent work on generating low-diameter decompositions in parallel. Intuitively, a low-diameter
decomposition of a graph, G = (V,E) is a partition of V into subsets such that the number of
edges with vertices in different components is minimized. Concretely, a (β, d)-decomposition
of an undirected graph G = (V,E) is a partition of V into subsets V1, . . . , Vk such that (1) the
shortest-path distance between any two vertices in Vi, using only vertices in Vi is at most d, and
that the number of edges (u, v) ∈ E s.t. u ∈ Vi and v ∈ Vk, i 6= k is at most βm.

Sequentially, a very simple algorithm can be used to compute a low-diameter decomposition.
Starting at an arbitrary vertex, the algorithm performs a breadth-first search, building a piece
until either the number of edges on the frontier is a β ·E ′ where E ′ is all edges within the piece.
The algorithm then stops, and recurses on the subgraph induced by removing all vertices in the
piece. As each piece has at most a β fraction of edges the total number of inter-piece edges is at
most βm. Similarly, one can prove a strong diameter bound of O(log(n)/β) [32].

Recent work on the problem of computing-low diameter decompositions has emerged due
to applications to solving SDD-linear systems (symmetric diagonally dominant linear systems)
in parallel [7]. The initial algorithm presented, however, was fairly complicated, and required
O(m log2 n) work in order to compute a decomposition of quality (β,O( log

4 n
β

)). The method
relies on growing the balls described in the sequential algorithm in parallel, if certain conditions
are met.

More recently, Miller, Peng and Xu [32] revisited the problem of computing low-diameter de-
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compositions of graphs and gave a simple and elegant algorithm for computing a (β,O(log n/β))
decomposition in O(m) work, and O( log

2 n
β

) expected depth with high probability. Their method
also builds on the parallel ball-growing idea introduced in the earlier paper [7], but allows all
balls to grow in parallel.

Their algorithm relies on the concept of ‘shifted distances’ and ‘random shifts’. Given a
graph, G = (V,E), each v ∈ V draws a value δv, independently from an exponential distribution
with mean 1/β. This value is called the random shift. The shifted distance between vertices u and
v, denoted d−u(u, v) is then d(u, v) − δu. Notice that values with a large value of δu experience
a shortened distance to all vertices in the graph – this intuition is key to understanding their
algorithm.

The second phase of the algorithm is an assignment process, and occurs after each vertex
has drawn a random shift. Each vertex, v is assigned to piece Su, started by the vertex u, which
minimizes the shifted-distance to the v. We can view this algorithm as performing a parallel
breadth-first search over a graph where all vertices are initially asleep. On each round, vertices
that are awake perform one step of a breadth-first search originating from them. If any of their
neighbors are currently unvisited, they are then acquired by the frontier vertex, and added to its
piece. Initially, the vertex v = argmaxv∈V δv is the only vertex that is awake. Then, at time t,
we add all vertices u s.t. δv − δu < t to the multiple-source BFS.

We describe an intuitive way of thinking about this algorithm, which turns the previously
described random shift on its head. As before, every v ∈ V draws a random shift from the
exponential distribution with mean (1/β). Now, we compute δmax = maxv∈V δv, and set the
random shift for vertex v to be δmax − δv. We perform a multiple-source breadth-first search,
where on round i, all vertices with shift-value δv between i−1 < δv ≤ i are awakened and placed
on the new frontier. Once again, awake vertices try to acquire vertices on their frontier. We have
skipped over one crucial detail, namely how conflicts are resolved when a sleeping vertex v is on
the frontier of two awake vertices, u,w. In this case, v is deterministically assigned to the vertex
minimizing its shifted-distance, that is the vertex with the smaller random shift.

We now provide short explanations of some key facts. For a more comprehensive and detailed
account, refer to [32].

Theorem 4.2.1 With high probability, for all vertex v, δv ≤ O( logn
β

).

Proof Using the CDF of the exponential distribution, F (x) = 1 − e−βx for non-negative x, we
have that the probability that δv ≥ (k+1) · logn

β
is 1−F ((k+1) · logn

β
) = e−(k+1)· logn

β ≤ n−(k+1).
Finally, applying union bound, over all vertices, we have that this quantity is ≤ n−k.

The high probability bound tells us the probability of any vertex’s shift value not being in
O(log(n)/β) is extremely low. Using this fact, we have that with probability 1 − 1

n−k , the
random-shifts algorithm produces a decomposition with strong-diameter O( logn

β
) (as the failure

probability is 1
n−k for a failure constant, k.

Consider an edge, (x, y), spanning between two pieces, Su and Sv, that is x ∈ Su and y ∈ Sv.
In order to bound the total number of inter-component edges, we first consider an arbitrary edge,
and try to bound the probability that its endpoints, x and y are acquired by different vertices.
This discussion follows more or less identically to the presentation in [32], and is augmented
with some intuition gained from conversations with Miller and Xu.
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The edge (x, y) is an inter-component edge only if x ∈ Su and y ∈ Sv, u 6= v. Let the
midpoint of the edge x, y be denoted w. First, consider the set of all shifted distances to w,
that is ∀v ∈ V, d(v, w) + δv, and sort vertices by this quantity. The vertex that acquires w
its piece, by definition, minimizes this quantity. Now, in terms of starting time, this is just
∀v ∈ V, d(v, w) + δmax − δv. Removing the δmax, as it appears in all equations, we have that the
vertex acquiring w for its piece is the vertex v ∈ V that minimizes d(v, w)− δv.

Now, consider the vertex w∗, which minimizes the distance to w. It is easy to see that w∗ is
one of {u, v}, as w is the midpoint of the edge (x, y), and x ∈ Su, and y ∈ Sv. Given that w∗

minimizes the distance to w, the paper now shows that

d−δ(u,w), d−δ(v, w) ≤ 1 + d−δ(w
∗, w)

or that the shifted distance from w to u or v is at most one more than the minimum shifted
distance to w. Notice that d−δ(w∗, x), d−δ(w∗, y) ≤ 1/2 + d−δ(w

∗, w), as w is the midpoint of
the edge (x, y), and the distance from x, y tow is 1/2. The proof follows by simple contradiction,
assuming d−δ(u,w) > 1 + d−δ(w

∗, w). This argument gives us that if x ∈ Su, y ∈ Sv, u 6= v,
then the shifted distance d−δ(u, x) and d−δ(v, y) differ by at most one. Therefore, in order to
bound the probability that an arbitrary edge (u, v) ∈ E is cut, we must bound the probability that
the minimum shifted distance to u, and the minimum shifted distance to v differ by less than 1,
as if the difference is greater than 1, both u and v will belong to the same piece.

The final argument we present from [32] formalizes this notion to compute the probability
that an arbitrary edge, (u, v) ∈ E has u ∈ Su, v ∈ Sv, u 6= v. As argued previously, an edge
is cut only when the difference between the smallest and second smallest shifted distances is
less than 1 (otherwise, both endpoints of the edge are included in the vertex which achieves the
minimum shifted-distance). We now prove the following lemma regarding the probability of an
edge being cut.
Lemma 4.2.2 For an arbitrary edge (x, y) ∈ E, x ∈ Su, and y ∈ Sv with probability β.
Proof By our previous argument, an edge goes between pieces exactly when the difference
between |d−δ(u, x) − d−δ(v, y)| < 1. [32] present a very elegant analysis of this situation -
they view each shifted distance as some arbitrary value di, in addition to a value sampled from
Exp(β). Using the analogy of light-bulbs, the di can be seen as some fixed times when a given
light-bulb is turned on. Then, each light-bulb has lifetime distributed according to Exp(β). We
must now compute the probability that the time the last light-bulb goes off minus the time the
second to last light-bulb goes off is less than 1. Using the memorylessness property of Exp, we
have that this is simply the probability P (X < 1) where X ∼ Exp(β). Using the CDF of the
exponential, this is just 1− e−β , which they approximate as 1− (1− β) = β. Identical analysis
allows us to conclude that P (X < c) ≈ cβ, which will be necessary for our use of this lemma.

4.3 Extending Low-Diameter Decompositions to Connectivity
Given a black-box algorithm for computing the low-diameter decomposition of a graph G =
(V,E), we can create a simple algorithm for computing the connectivity labeling of G. The
algorithm first calls the black-box decomposition algorithm and obtains a low-diameter decom-
position, which induces some k disjoint subsets of V = {V1, . . . , Vk}. We then contract each
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Vi, placing a single node for each Vi in G′, and relabeling edges that cross different pieces in the
decomposition. We then recurse on this graph, until we are left with a collection of singleton
nodes.

Using the low-diameter decomposition algorithm designed by Miller et al. [32] as our black-
box algorithm during a single round guarantees that at most βm edges span different components
in expectation. Therefore, with β set to a constant fraction, the contracted subgraph in the next
round only has a constant fraction of the original edges. This implies that the number of rounds
the algorithm runs is O(log 1

β
m) in expectation. The connectivity algorithm described in the

following chapter formalizes this intuition. The critical difference between this connectivity
algorithm and previous contraction-based approaches to connectivity is that the number of edges
decreases by a constant fraction each round, which allows us to prove the work-optimality of our
technique.

In the final chapter, we formally present this new connectivity algorithm, describe two ver-
sions of the low-diameter decomposition algorithm and their theoretical guarantees, and finally
detail the experimental results of the algorithm.
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Chapter 5

Simple Work-Efficient Connectivity

We have described a number of techniques for computing the connectivity labeling of a graph,
including computing spanning-forests, random-mate, and sampling-based techniques. Finally,
we described the recent development of a fast parallel algorithm for computing low-diameter
decompositions of a graph [32]. Using this algorithm as a sub-routine, we described a simple
connectivity algorithm. In this chapter, we formally describe this connectivity algorithm, show
the theoretical guarantees of a non-deterministic version of this algorithm and finally describe
our implementation of the algorithm as well as its experimental performance.

Our main contributions in this work are the development of a simple linear-work, polylog-
arithmic depth parallel algorithm for connectivity, and a highly optimized implementation of
this algorithm that is competitive with the fastest existing parallel implementations of graph-
connectivity.

5.1 A Simple Algorithm

We will make extensive use of the notation and tools from Miller et al [32]. The reader is advised
to refer to Section 4.2 for a short description of some of their main results, or the original paper
for a full account. We now describe our first connectivity algorithm that uses a deterministic
version of the low-diameter decomposition.

Algorithm 1 Parallel decomposition-based algorithm for connected components labeling
1: β = some constant fraction in (0, 1)
2: procedure CC(G(V,E))
3: L = DECOMP(G(V,E), β) . L contains the labels returned by DECOMP

4: G′(V ′, E′) = CONTRACT(G(V,E), L)
5: if |E′| = 0 then
6: return L
7: else
8: L′ = CC(G′(V ′, E′))
9: L′′ = RELABELUP(L, L′)

10: return L′′

35



Algorithm 1 shows pseudo-code for our parallel connectivity labeling algorithm. It uses a
low-diameter decomposition, labeled DECOMP as a sub-routine, which takes as input a graph
G = (V,E) and a value β, 0 < β < 1. Decomp implements the low-diameter decomposition
algorithm described in Section 4.2, which runs in O(log3 n) depth and O(m) work in expecta-
tion. DECOMP then returns a labeling of v ∈ V into [0, k), where k is the number of pieces
generated by the decomposition. The algorithm itself is very simple and easy to understand. We
use DECOMP to compute a low-diameter decomposition of G. CONTRACT then contracts all
vertices in a given piece to a single vertex, with only inter-piece edges remaining, and returns a
graph G′. If G′ only has singletons remaining, we return the labeling induced by DECOMP, as
we have decomposed the original graph into its connected components. Otherwise, we recurse,
computing the labeling for G′, and then compute a labeling for G using the procedure RELA-
BELUP. RELABELUP simply computes L′[L[v]]∀v, which is necessary in order to propagate
label information from the recursive call to CC.

5.1.1 Theoretical Guarantees

We now prove the expected work and depth of our algorithm.
Theorem 5.1.1 Algorithm 1 runs in O(m) work and O(log3 n) depth in expectation on a CRCW
PRAM.

Proof We first consider the number of iterations this algorithm runs in expectation. As DECOMP

returns a decomposition of V with at most βm inter-piece edges, the number of edges in G′, the
contracted graph, is at most βm, without the removal of any multi-edges. For β set to some
constant, 0 < β < 1, we observe a geometric decrease in the number of edges between each
round. Therefore, the total number of recursive calls is O(log 1

β
m) in expectation.

Furthermore, in each recursive call we have a call to DECOMP, which runs in O(m′) work
and O( log

2(n)
β

) depth in expectation, where m′ is the number of edges in this round. Assuming
that we can perform CONTRACT and RELABELUP within the timebounds of DECOMP, that is
O(m) work andO( log

2(n)
β

) depth, CC runs inO(m) work andO(log 1
β
m log2 n

β
) = O(log3 n) work

(logm ∈ O(log n)).
We now describe how to implement DECOMP, CONTRACT and RELABELUP to meet these

time-bounds. The simplest implementation of DECOMP simply runs a multiple breadth-first
search algorithm in parallel, where vertices are staged to start at various times sampled from an
exponential distribution. Each active BFS in the graph corresponds to a single piece produced
by the decomposition. We can maintain this multiple BFS using a single frontier-array, where all
vertices belonging to a single piece are placed consecutively in the frontier. Furthermore, as we
place exactly n vertices on our frontier, we can pre-allocate this frontier array and maintain an
offset into it that increases each round. Furthermore, recall that DECOMP produces a maximum-
shift value of O( logn

β
), and therefore, we have O( logn

β
) frontiers in total with high probability.

As each piece’s vertices are consecutive, each piece simply maintains an index into each frontier
where its vertices start and end.

Notice that after one iteration of BFS, each vertex processed on the current frontier can
compact its own adjacency list to only include edges that will be included in the contracted
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graph (the edge array only includes inter-piece edges, with multi-edges still remaining). This
process involves simply maintaining an index while iterating over the vertex’s adjacency list,
and compacting the list by writing over edges going between two vertices in the same piece.
Therefore, during the multi-source BFS, we can also maintain the number of edges for each
vertex (by rewriting the vertex’s degree), and perform both adjacency list compaction in O(m′)
work and O(logm′) depth where m′ is the number of edges in the current graph. We now
describe how to implement CONTRACT using this information produced by DECOMP.

First, notice that using the rewritten vertex adjacency lists, which only have inter-piece edges,
we can compute a new array consisting of only inter-piece edges (by using a prefix-sum on
the degree array, and in parallel copying each vertex’s inter-piece edges into this new array).
However, there may still be duplicate edges which we must remove. We can now remove these
duplicate edges from the array using hashing, which can be done in O(m′) work and O(logm′)
depth [31]. We emphasize that the number of edges goes down by a constant factor even without
removing duplicates (multi-edges) in G′. We will later describe an empirical observation that the
number of edges decreases by another large factor when removing duplicates.

We now have an edge-array consisting of all inter-piece edges. However, the vertex ids of
these edges are still in the original range, [0, n), and in order to contract the graph we must
relabel them to be in the range [0, k) where k is the number of pieces generated by DECOMP. We
do this once again by using a prefix sum to compute a map, L′, from vertices to their ids in the
contracted graph. This map is then used to relabel the edges endpoints to be in [0, k). We then
pass the correctly labeled graph into the recursive call of CC, and obtain a labeling L′′ which
maps the contracted vertices to their true connectivity labels which are in the range [0, k′).

L′′, the result of the recursive call is then taken by RELABELUP, which simply maps the
original vertices to their new connectivity labels, which can be easily done in O(m′) work and
O(logm′) depth, as for each v ∈ V we simply compute L′′[L′[v]] in parallel. Therefore, we
have shown that both CONTRACT, RELABELUP and DECOMP can be performed in O(m′) work
and O(log2 n′) depth in expectation, giving us a total of O(m) work and O(log3 n) depth in
expectation.

5.1.2 Allowing Non-Determinism
We now describe a small modification of the algorithm which makes the low-diameter decom-
position non-deterministic, and describe the theoretical properties of the connectivity algorithm
as a result of this non-determinism. First, notice that the determinism or non-determinism of our
connectivity algorithm is dependent solely on the choice of a deterministic or non-deterministic
low-diameter decomposition, as all other steps are deterministic given a choice of decomposition.

Recall that in the low-diameter decomposition algorithm described in 4.2, we determined
which piece a vertex, u,was added to by computing the shifted distance for each v ∈ V , and
choosing the vertex which achieved the minimum, using the fractional part of the shifted-distance
in order to break ties. That is, u was assigned to the vertex v minimizing:

argmin
v∈V

d(v, u)− δv

As the exponential distribution has support on the non-negative reals, we had two vertices, x, y
tying for ownership of a vertex u being a zero-probability event. Furthermore, the analysis which
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bound the probability of an edge lying between two pieces as β was dependent on the fact that the
edge’s endpoints belong to different pieces only when the smallest, and second-smallest shifted-
distances to the midpoint of the edge different by less than 1.

Now, suppose that instead of choosing the vertex achieving the minimum shifted-distance,
we randomly choose one of the vertices that has shifted-distance < 1. We first claim that this
modification is equivalent to the following two situations. Once again, consider each v ∈ V
drawing values independently from Exp(β), but instead of keeping the fractional part of each
value, we round down all values to the nearest integer. For a vertex, u, the vertex v that u is
assigned to is still computed by calculating argminv∈V d(v, u) − δv, but now ties are broken
arbitrarily amongst vertices achieving this minimum.

A more natural algorithmic depiction of this situation is given as follows. Once again, we
perform a multi-source BFS, starting vertices at a given round if their shift-value is less than the
current time-step. Now, for some vertices u, v on the current frontier, where the edges (u,w)
and (v, w) both exist to some asleep vertex w, we allow either u or v to acquire w for its piece.
We now show that we only see twice as many inter-piece edges in expectation when using this
random tie-breaking strategy.

Lemma 5.1.2 Breaking ties arbitrarily in the low-diameter decomposition algorithm produces
an O(2β,O( logn

β
) decomposition with high probability.

Proof Firstly, in order to prove the strong diameter bounds, notice that we are still picking
random-shifts from Exp(β), and our previous proof showing that the value of the maximum
shift is in O( logn

β
) with high probability still holds. This proves the bound on diameter, because

after δmax ∈ O( lognβ ) rounds, the algorithm terminates as every vertex ‘wakes up’. Secondly, we
must show that the number of inter-piece edges is at most 2βm.

Once again, consider w, the midpoint of an edge (x, y), where x ∈ Su and y ∈ Sv. Recall
that if x and y are placed in different pieces, then d−δ(u,w) and d−δ(v, w) are within one of the
minimum shifted distance to w. As the arbitrary argument just rounds down all shifted-distances
to the nearest integer (it rounds the random-shifts down, which correspond to rounding down
the shifted-distances as we operate on an unweighted, undirected graph). Now, two rounded
shifted-distances differ by at most one when the original un-rounded distances differ by at most
two.

Thus, by applying Lemma 4.2.2 which showed that the probability that the smallest, and
second-smallest shifted-distances are c apart is cβ with c = 2, we have that this probability is at
most 2β. Thus, the probability that an edge is cut, or has its endpoints in two separate pieces is
at most 2β. By linearity of expectations, we have that the total number of cut edges is at most
2βm, which concludes our proof.

As a corollary, for 0 < 1/2 < β, we can plug in the arbitrary-rounding decomposition
algorithm into Theorem 5.1.1 to obtain a linear-work, polylogarithmic depth connectivity algo-
rithm. Continuing onwards, we refer to the arbitrary-rounding algorithm as DECOMPARB. We
will give a more thoroguh treatment of DECOMPARB when describing implementation details of
both DECOMP and DECOMPARB.
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5.2 Implementation
We implemented two variants of our connectivity algorithm, CCDET and CCARB, which cor-
respond to a deterministic and non-deterministic version respectively. Both algorithms are im-
plemented in C + + using Cilk Plus to express parallelism. As the primary difference between
CCDET and CCARB is in their choice of decomposition algorithm, we will focus on our imple-
mentation of the two decomposition algorithms, and describe various optimizations made.

Both algorithms require us to draw random-shfits from Exp(β). Instead of doing this using
C + +’s STD::EXPONENTIAL DISTRIBUTION, we opted use the suggestion provided by [32],
and simulate the exponential distribution by first generating a random permutation of the vertices,
and then simulating shifts by adding eiβ many vertices on the i’th round (we add chunks of
vertices taken from this random permutation in order, until all chunks have been used, which
occurs for i = log(n)/β.

We represent a graph using the adjacency array format. In this representation, we maintain
two arrays. The first array consists of all edges in the graph, represented by their target endpoint.
The second is an array of vertex offsets, where each vertex points to the start of its adjacency list
in the edge array. Using the vertex offset array, we can implicitly store the degree of vertex i,
which is recovered by computing offset[i + 1] − offset[i]. We set offset[n − 1] = m. We also
denote the current frontier as F , and the next frontier as F ′.

We first give a general account of techniques used in both algorithms. Because our simulation
of the exponential distribution consists of generating a random permutation and choosing expo-
nentially larger chunks from this permutation to add onto the next frontier, we have no access
to a fractional shift-value when breaking ties. To remedy this, we also draw integers at random
from a large-enough range that w.h.p. there are no ties, and use these numbers to simulate the
fractional parts of the shift-value. We denote these integers representing the fractional parts of
the shift value by δ′. The algorithm proceeds as a multiple-source BFS, and stores each frontier
in a single array of size |V |. Because we visit exactly n vertices, we can pre-allocate this space,
and write each successive frontier into the array in parallel.

In the deterministic algorithm, DECOMP we have to deterministically guarantee that only the
vertex with the smallest shifted-distance to a target vertex v is allowed to mark v with its piece’s
id. In order to implement this, we create an array C which stores a single pair for each vertex.
Initially, all pairs are initialized to (∞,∞). For a vertex v, the first component of C, denoted
C1[v], is used to resolve conflicts when multiple vertices on a frontier are trying to acquire v.
The second component of C[v], denoted C2[v], is used to mark the vertex id of the piece that v is
assigned to.

The algorithm runs a two-phase BFS. When vertices are being added as new piece centers,
we set C[v] = (−1, v), where −1 indicates that this vertex has already been visited, and the v
indicates that the piece id is its own vertex id. In the first phase, all vertices on the frontier iterate
over their out-edges. Then, for each edge (u, v), where u ∈ F and v is an unvisited vertex, u
uses a writeMin operation and writes a pair, (uid, ufrac) where uid denotes the id of u’s piece, and
ufrac denotes the integer representing the fractional part of u’s shift-value. We use the writeMin
in order to ensure that the vertex with the smallest fractional shift-value acquires the target vertex
out of all other vertices on the current frontier competing for the target.

DECOMP then carries out a second BFS, where for each u ∈ F , u examines its out-neighbors
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Algorithm 2 Decomp
1: C = {(∞,∞), . . . , (∞,∞)}
2: Frontier = {}
3: numVisited = 0
4: while (numVisited < n) do
5: add to Frontier unvisited vertices v with δv < round + 1
6: and set C[v] = (−1, v) . new BFS centers
7: numVisited = numVisited + size(Frontier)
8: NextFrontier = {}
9: parfor v ∈ Frontier do

10: start = V [v] . start index of edges in E
11: k = 0
12: for i = 0 to D[v]− 1 do
13: w = E[start + i]
14: if C1[w] 6= −1 then
15: if C1[w] > δ′C2[v]

then
16: writeMin(C[w],(δ′C2[v]

, C2[v]))

17: E[start + k] = w
18: k = k + 1
19: else
20: if C2[w] 6= C2[v] then
21: E[start + k] = −C2[w]− 1
22: k = k + 1

23: D[v] = k

24: parfor v ∈ Frontier do
25: start = V [v] . start index of edges in E
26: k = 0
27: for i = 0 to D[v]− 1 do
28: w = E[start + i]
29: if w ≥ 0 then
30: if C1[w] = δ′C2[v]

and CAS(C1[w], δ
′
C2[v]

,−1) then
31: add w to NextFrontier . v won on w
32: else
33: if C2[w] 6= C2[v] then
34: E[start + k] = −C2[w]− 1
35: k = k + 1

36: else
37: E[start + k] = w
38: k = k + 1

39: D[v] = k

40: NextFrontier = Frontier

once more. For each unvisited vertex v that u visits, u checks the value written to v. If C[v] ==
C[u] (both the fractional value, and the component id are the same), then u uses a compare-and-
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swap to atomically acquire v. The compare-and-swap is necessary for correctness to ensure that
v is only added a single time to the next frontier.

Examining Algorithm 2, notice that we also perform rewriting, or ‘packing out’ of a vertex’s
adjacency list while performing the BFS. In the first phase of the BFS, we first check to see
whether the vertex in F ′ has already been visited. If it has not, we perform the usual writeMin
operation, trying to place a reservation for the vertex, and preserve the edge until the second BFS
(lines 17 and 18). Otherwise, if the vertex has already been visited, we check to see whether the
id of the piece it belongs to is different from our own. If this is the case, we preserve the edge
(lines 21 and 22). Otherwise, the edge is written over, as it goes between two vertices in the same
component. Finally, we set our degree to be k, as only the first k edges in our adjacency list are
relevant.

We also perform rewriting in the second BFS. In the second phase, we have eliminated all
intra-piece edges for vertices that were acquired in previous rounds. We may however still have
some intra-component edges that are created by vertices added in this round, and must therefore
eliminate these. Just as in phase 1, we maintain a variable k used to compute our new degree. If
we win the compare-and-swap for a vertex on our frontier, then the edge (u, v) is intra-component
and is not preserved, and is not included in the degree of u. Otherwise, if we lose the compare-
and-swap, we must check the piece-id of the vertex. If it is different than our own, we must
rewrite the edge, and increment k. Therefore, at the end of the second BFS, the first Deg[v] = k
vertices in our adjacency list are solely inter-piece edges.

Algorithm 3 Decomp-Arb
1: C = {∞, . . . ,∞}
2: Frontier = {}
3: numVisited = 0
4: while (numVisited < n) do
5: add to Frontier unvisited vertices v with δv < round + 1
6: and set C[v] = v . new BFS centers
7: numVisited = numVisited + size(Frontier)
8: NextFrontier = {}
9: parfor v ∈ Frontier do

10: start = V [v] . start index of edges in E
11: k = 0
12: for i = 0 to D[v]− 1 do
13: w = E[start + i]
14: if C[w] =∞ and CAS(C[w],∞, C[v]) then
15: add w to NextFrontier
16: else
17: if C[w] 6= C[v] then . inter-component edge
18: E[start + k] = C[w]
19: k = k + 1

20: D[v] = k

21: NextFrontier = Frontier

We now describe the implementation of our second low-diameter decomposition algorithm,
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CCARB. The second connectivity algorithm, CCARB is non-deterministic solely because it
uses DECOMPARB as its low-diameter decomposition subroutine instead of DECOMP. We first
implemented DECOMPARB, and toyed with non-determinism due to the fact that DECOMP was
fairly slow due to the fact that every edge was inspected twice in two BFS phases per frontier.
Therefore, we investigated replacing the two-phase BFS with just a single BFS phase, where all
vertices on the current frontier simply used compare-and-swap to acquire unvisited vertices.

To this end, consider the non-deterministic low-diameter decomposition algorithm described
in Algorithm 3. The operation of the algorithm is similar to Algorithm 2 except for the fact that
we only perform a single BFS. We once again use rewriting to ‘pack out’ unnecessary edges and
only preserve inter-piece edges that will become a part of the contracted graph. Furthermore,
instead of using a writeMin in order to reserve vertices, each vertex simply uses a compare-and-
swap in order to acquire a vertex on the new frontier atomically. This ensures that vertices appear
exactly once on a frontier, and are not duplicated. The vertex in the current frontier that wins a
compare-and-swap is then responsible for adding the acquired vertex to the next frontier.

Because DECOMPARB only makes a single pass over the out-edges of each frontier (instead
of two passes as in DECOMP), we expected DECOMPARB to have better overall performance and
speedup compared with DECOMP. As we will shortly see when describing our experiments, there
is a significant difference between DECOMP and DECOMPARB, indicating that determinism in
algorithms often comes at a price. We wish to comment that one can see similar effects in the
graph-processing systems mentioned in Chapters 1 and 2 of this work, where systems that used
BSP models were often orders of magnitude slower than systems that allowed for asynchronous
updates.

We also implemented a third version of the decomposition algorithm, called DECOMPARB-
HYBRID, which uses the direction optimizing breadth-first search introduced by Beamer et
al. [3]. We gave a thorough overview of the direction optimizing BFS in Section 3.2.1, and its
applicability to Ligra and Cogra. We now consider the direction-optimizing breadth first search
and its applicability to our connectivity algorithm.

Notice that even if we alternate between the ‘bottom up’ and ‘top down’ breadth-first search,
we must still inspect all edges from a vertex v on the current frontier. This is because we actually
compact v’s adjacency array while doing the breadth-first search in order to contract the graph
within the time bounds. Therefore, if we apply the optimization, and have all unvisited vertices
in the graph inspect their in-edges when the frontier is dense, we must apply a post-processing
step where each vertex goes through its edges and compacts out intra-piece edges.

5.3 Experiments
We have presented a theoretical algorithm for computing the connectivity labeling of a graph and
described three implementations of the algorithm, DECOMP, DECOMPARB, and DECOMPARB-
HYBRID. We now investigate the experimental properties of these algorithms, and benchmark
them against a number of other algorithms for connectivity.

Our experimental setup is covered in Section 1.1. We once again make use of the rMat,
randLocal and 3D-grid graphs described previously. We introduce a second version of the rMat
graph, called rMat2, which uses the same generator as rMat, but has a higher edge-to-vertex
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ratio, which results in a denser graph. We also introduce the line graph, which as its name
suggests is a path of length n − 1. The graph has diameter n − 1, and is a degenerate edge
case to measure how our connectivity algorithms perform on high-diameter graphs. We also use
the com-Orkut graph, which is a social network graph downloaded from the Stanford Network
Analysis Project (SNAP) [1]. We note that the generated graphs are not represented in the ‘local’
order described earlier, but are given in a random order for consistency. Table 5.1 describes the
sizes of the graphs used in our experiments.

Input Graph Num. Vertices Num. Edges
random 108 5× 108

rMat 227 5× 108

rMat2 220 4.2× 108

3D-grid 108 3× 108

line 5× 108 5× 108

com-Orkut 3,072,627 117,185,083

Table 5.1: Input graphs

We compare our algorithms to several publicly available parallel implementations of con-
nectivity. To the best of our knowledge, these are the fastest available parallel connectivity
algorithms that we are aware of [37, 52]. We refer to the algorithm using DECOMP as decomp-
min-CC, the algorithm using DECOMPARB as decomp-arb-CC, and lastly the algorithm using
DECOMPARBHYBRID as decomp-arb-hybrid-CC.

The first algorithm we benchmark against is by Patwary et al. [37]. The implement two
versions of their algorithm, one using locks, and the other using verification. We were successful
in running their lock-based implementation, but found that their verification-based algorithm
sometimes failed to terminate. Both algorithms are based off of union-find. We also noticed that
their lock-based algorithm typically outperformed the verification-based algorithm. We refer
to the lock-based algorithm as parlalel-SF-PRM in our experiments. We also compare our
algorithm against the parallel spanning forest implementation of connectivity that is provided in
the Problem Based Benchmark Suite [52]. We refer to this algorithm as parallel-SF-PBBS. Both
of these parallel implementations of connectivity have been found to work well in practice, but
unfortunately neither are theoretically work-efficient.

We also include a baseline serial algorithm, which implements a simple union-find algorithm,
which we refer to as serial-SF. This algorithm can be found in the PBBS, along with the parallel
spanning forest algorithm. We found that breadth-first search was slower than the union find
algorithm (mostly due to BFS’s difficulty with high diameter graphs) and therefore use the union-
find algorithm as our serial benchmark.

We report running times for all algorithms in Table 5.2. For each graph, we report the serial
running time, as well as the 40h time, which is the running time on 40 cores with hyper-threading
enabled. We report the median of three trials for each time. We observed that decomp-arb-CC
and decomp-arb-hybrid-CC almost always outperform decomp-min-CC, which is likely due to
the fact that decomp-min-CC must pass over each edge in the frontier twice, whereas decomp-
arb-CC and decomp-arb-hybrid-CC only require a single pass over the edges in the frontier.
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Implementation random rMat rMat2 3D-grid line com-Orkut
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serial-SF 19.5 – 21.5 – 2.86∗ – 17.5 – 68.6 – 0.82∗ –
decomp-arb-CC 43.1 1.97 46.7 2.5 6.95 0.256 30.1 1.36 254 6.49 2.35 0.115

decomp-arb-hybrid-CC 38.7 1.89 39.8 2.22 4.11 0.116 30.6 1.39 247 6.5 1.22 0.058
decomp-min-CC 74.8 2.86 76.3 3.49 7.22 0.221 57.9 2.11 348 9.11 2.39 0.132

parallel-SF-PBBS 70.9 1.91 79.2 2.13 9.79 0.515 41.1 1.53 174 5.22 2.98 0.156
parallel-SF-PRM 48.8 1.64 42.2 1.3 4.51 0.1 30.3 1.33 313 4.02 1.25 0.04

Table 5.2: Times (seconds) for connected components labeling. (40h) indicates 40 cores with
hyper-threading. ∗We used the timing for the sequential spanning forest code from Patwary et
al. [37] as we found it to be faster than the PBBS implementation.

Furthermore, decomp-arb-CC is usually outperformed by decomp-arb-hybrid-CC, due to the
direction optimizing BFS that is implemented in decomp-arb-hybrid-CC. For graphs where the
frontier grows large, the bottom-up BFS allows the algorithm to exploit more parallelism than the
top-down BFS, which results in a performance increase for the hybrid algorithm. We note that
the times for decomp-arb-CC and decomp-arb-hybrid-CC is roughly the same on the 3D-grid
and line graphs, as the size of the frontier never grows large enough to warrant the read-based
(bottom up) computation.

Finally, compared to parallel-SF-PRM – the lock based algorithm by Patwary et al. – our
fastest algorithm, detomp-arb-hybrid-CC is at most 70% times slower in parallel, and is faster
sequentially. We also note that compared to parallel-SF-PBBS, the second parallel algorithm, our
code is faster in parallel on all inputs. Finally, compared to the serial implementation, decomp-
arb-hybrid-CC is about 1.4–3.6 times slower on a single thread. The self-relative speedup of
our fastest parallel implementation (decomp-arb-hybrid-CC) is 18–38. We achieve a speedup of
10–25 relative to the sequential implementation on this class of graphs.

We also plotted the running times displayed in Table 5.2 for a various thread counts in Fig-
ure 5.1. Both axes are plotted on log-scale. We also included the serial time for the sequential
algorithm (serial-SF) in order to provide a baseline comparison. We observe that all parallel im-
plementations achieve good speedup, and start to outperform the sequential algorithm even on a
small number of threads. We also notice that the linear-work (work-efficient) implementations
of parallel connectivity are not much slower than the spanning forest-based implementations,
which are theoretically super-linear work algorithms.

We also investigated various properties of our decomposition algorithms as a function of β.
Recall that 0 < β < 1 is a parameter of the low-diameter decomposition algorithm which con-
trols both the diameter of pieces in the decomposition, as well as the number of inter-component
edges observed in the decomposition. We show a plot of β vs running-time in Figure 5.2 on 40-
cores for decomp-arb-CC, decomp-arb-hybrid-CC, and decomp-min-CC. We noticed the sim-
ilarity between the deterministic and non-deterministic algorithms, which is suggested by the
theory presented in Section 4.2. Perhaps as expected, lower values of β correspond to more per-
formant connectivity algorithms, which is likely due to the lower number of inter-piece edges
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Figure 5.1: Times versus number of threads on various graphs on a 40-core machine with hyper-
threading. (40h) indicates 80 hyper-threads.

passed down to recursive calls of the algorithm. We observed that a value of β = 0.2 provided
good results across all graphs.

Finally, Figure 5.3 shows the number of edges remaining per iteration of the algorithm as
a function of β. We plot this quantity for decomp-arb-hybrid-CC. As predicted by the theory,
smaller values of β correspond to a fewer number of edges between pieces, which leads to fewer
iterations until the algorithm terminates. We also note that the theoretical upper bound of 2βm
on the number of inter-piece edges being removed is an upper-bound, and does not account for
the large number of multi-edges that are eradicated by removing duplicate edges. In practice,
this leads to a significantly sharper decrease in the number of edges removed than predicted by
theory. It would be interesting to find a way to account for multi-edges in the theoretical bounds.

We also performed granular profiling of each of our three algorithms, decomp-arb-CC, decomp-
arb-hybrid-CC, and decomp-min-CC.

In Figure 5.4, we show the breakdown for the 40-core times of decomp-min-CC (the deter-
ministic algorithm). We break the running of the algorithm into 5 phases: init, bfsPre, bfsPhase1,
bfsPhase2, and contractGraph. init accounts for the time used when generating random permu-
tations and initializing arrays in all phases. bfsPre refers to the time used when adding vertices
to the frontier, and computing offsets into shared arrays. bfsPhase1 and bfsPhase2 refer to the
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Figure 5.2: Running time versus β on various input graphs on a 40-core machine using 80 hyper-
threads.

first BFS and second BFS respectively of Algorithm 2. Finally, contractGraph refers to the time
spent removing duplicates, relabeling vertices, and creating the contracted graph.

Figure 5.5 displays the breakdown for the 40-c0re times for decomp-arb-CC. init, bfsPre,
and contractGraph account for the same quantities as before. bfsMain is the time spent in the
main phase of the BFS of Algorithm 3. We note that most of the running time of the algorithm is
spent in the BFS. Compared to decomp-min-CC, the breakdown makes it clear that the primary
cause for the improvement in running time is the elimination of the first BFS using the writeMin.

Figure 5.6 displays the breakdown for the 40-core times for decomp-arb-hybrid-CC. init,
and bfsPre account for the same quantities as before. bfsSparse is the time spent performing
the top-down BFS using parallelism over the current frontier vertices. bfsDense is the time spent
performing the bottom-up read based BFS by parallelizing over all unvisited vertices. filterEdges
is the time spent filtering out intra-piece edges. We notice that for 3D-grid and the line graph,
the frontier never becomes dense enough to use the dense read based BFS. We also note that
because we still have to inspect all edges in order to compact out intra-piece edges, the graph on
which the read-based BFS is actually used have to pay extra in the filterEdges phase in order to
compact the adjacency lists.
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Figure 5.3: Number of remaining edges per iteration versus β of decomp-arb-hybrid-CC on
various graphs.
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Figure 5.4: Breakdown of timings on 40 cores with hyper-threading for decomp-min-CC.
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Figure 5.5: Breakdown of timings on 40 cores with hyper-threading for decomp-arb-CC.
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Chapter 6

Conclusion

The rapidly growing size of modern graphs has created a number of unique problems and oppor-
tunities for researchers. In order to be useful in this new modern landscape of massive graphs,
theoretically work-efficient algorithms for the PRAM must be rethought and revisited. Despite
their theoretical work-efficiency, many of these algorithms remain impractical to implement. On-
going research at the intersection of the theory and practice of parallel algorithms must address
these issues, while providing a solution that scales with the exponential increase in graph sizes
observed yearly. To this end, we have made two contributions in this work, both of which address
the problem of scaling algorithms for large graphs.

We have described and implemented Cogra, a compressed graph processing framework for
shared memory architectures. Using Cogra, we can compress graphs to significantly fewer bits-
per-edge, allowing researchers to fit previously prohibitively large graphs in main memory. The
compressed representation illustrates the balance between lowering the number of bits-per-edge
in the graph while still allowing reasonable query times on a given vertex’s adjacency list. We
also show how the compressed representation is empirically as fast as, or even faster than a
framework operating on an uncompressed representation of the graph.

Approaching the scalability problem in a different direction, we have also described a new
theoretically work-efficient and practical algorithm for computing the connected components and
connectivity labeling of a graph. Unlike other existing implementations of parallel connectivity,
our algorithm is grounded in theory. We also find an implementation of our algorithm to be
competitive with the best known implementation of graph connectivity. The algorithm is the first
known practical work-efficient parallel algorithm for this problem.

We conclude by remarking on the sheer number of problems that require attention from re-
searchers interested in both the theory and practice of parallel algorithms. From graph-analytic
problems such as inference and topic-recommendation to fundamental problems on graphs such
as bi-connectivity and maximum-flow, there are an overwhelming amount of problems still wait-
ing to be tackled from a highly parallel and scalable perspective. Future work must investigate
these fundamental problems in order to design theoretically sound and simultaneously perfor-
mant algorithms that are useful in practice.
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